A Guide to Going Solar For Businesses

Earth has become increasingly warmer every year with rising temperatures. The burning of fossil fuels in the past 150 years for electricity, heat, transportation, and any other human activity has increased greenhouse emissions. Other natural resources are also rapidly depleting, thus giving us a cause of worry.

Several homeowners and mainly businesses are, therefore, turning to renewable energy sources to become self-sustainable and self-reliant. Costs of commercial electricity are rising day by day with no end in sight. By turning to green energy, businesses can reduce operational costs and reinvest that amount back into their businesses.

If your business uses electricity for lighting, HAVC, computing, or production, opting solar for businesses will significantly reduce the cost. Installing these solar panels and combining them with an appropriate energy storage system, your business can save up to 20 to 25% energy and move towards energy independence.

Eligibility for Going Solar

One of the major factors to consider when going solar is whether it makes sense for your business to do so. Apart from this, going solar would be ideal for organizations that:
  • Work in states like California, Hawaii, or any state that either has expensive energy or massive Federal incentives
  • Have enough land, rooftops, or parking lots adjoining their businesses where the solar panels can Be set up
  • Have prioritized sustainability
  • Have massive energy demands
  • Market themselves as an environmentally friendly business


Reasons to Use Solar Power for Businesses

Growing businesses opt for investing in commercial solar power mainly to aid in offsetting additional expenses. With the expansion of the business, electricity consumption will also increase. You can also time your roof repairs or new constructions to coincide with installing new solar panels. Transforming into a business that chooses to become carbon-neutral by utilizing solar energy will enhance your business image in the community.

Implementing commercial solar panels cuts down your energy consumption and helps increase your savings. Excess energy generated by these solar panels can be stored with the help of off-grid batteries. Solar energy has a major drawback. Your company won't be powered at night or in severe weather conditions as solar only works during the day. Solar energy cannot handle the sudden power surges required to handle heavy machinery. Businesses are then forced to purchase and use commercial electricity to manage these spikes. However, these spikes can prove to be expensive. Merging photovoltaic systems with storage solutions can ease these spikes. This is vital during the "shoulder" hours when the sudden surge spikes can lead to demand charges.

Benefits of Going Solar

Reduction in Costs

The single biggest advantage of going solar is a massive reduction in electricity bills. Locations where 'net metering' is available can become another source of revenue for your business as the excess power produced can be sold to your local utility. Businesses, and companies that rely on out of date energy sources like coal, could be paying 7 to 30 cents per kilowatt-hour (kWh), whereas those using solar energy were paying between 2 to 12 cents per kWh.

The benefits of switching to solar depend on several factors- locations, industry, and business size. The most advantageous enterprises would be the ones who have built an appropriately sized system to cover all energy requirements and enough power to fall back on during peak consumption hours.

Businesses can incur additional charges due to demand and delivery. Utility services apply these charges to recover costs of purchasing energy and maintaining power lines and energy lost in the transmission system. Moving power sources closer to your business will help you avoidsuch preventable expenses.

There are possibilities of ascension in solar energy projects. You can start with a smaller set of solar panels that would contribute to your daily energy needs and build it over time. You can always sell the excess energy produced to your local utility provider as a source of additional revenue.


Federal Tax Incentives

As of 2021, the investment tax credit (ITC) allows businesses to deduct 22 percent of the cost of installing solar energy systems from their federal tax with no cap on its value. These businesses are eligible for the tax incentive as long as they have their energy system. I'f youdon't have enough tax liability to claim the credit that year, the outstanding credits would roll over to the next year, so long the tax credit is in effect.


Durability

Like every other power source, solar has its limitations too. The infrastructure that can consume excess solar power is not yet up to the mark. Since solar is tied to the grid, they are interdependent. If the grid fails, solar goes down too. Therefore, it is important to add a microgrid to the energy system.

Adding a micro-grid detaches your business from the utility providers and makes it independent of their services. It makes your organization what is known as an 'energy island'. The existence of these energy islands only protects your enterprise from power cuts due to natural disasters or any physical or hacking attacks. Your energy islands may also provide electricity to your local community during emergencies.


Sustainability 

Solar energy has a massive role to play in the future of sustainability and environmental protection. By converting your business into a solar-powered business, you ensure the protection of the environment and reduce your company's carbon footprint on the planet. Studies also indicate that using solar energy for a long time also reduces utility costs. You can then invest the saved amount back into your business to promote advancements and innovations.

Being a solar-powered business could be an alluring prospect for your potential business partners. Environment-inclined customers tend to turn to prefer "responsibly green" businesses, and these businesses also appease local and state regulators, governments, and hedge funds.


Lower Maintenance Cost

Another major reason solar power is beneficial for your business is low to zero maintenance of the installed solar panels. Agencies that provide solar panels offer a warranty of 20 to 25 years on them. Since solar panels have fewer movable parts, the chances of these parts disintegrating or rusting are highly unlikely as opposed to technology that relies on movable parts. Thus, switching to solar energy would be the appropriate step to take for your business.


Things to Keep in Mind when Switching to Solar

When investing in solar energy, there are a few imperatives that businesses must follow. No matter the size, your business must be located where there is adequate sunlight, a roof strong enough to sustain the panels, and be inclined to reduce the cost of all operations.

There are various simple 'do-it-'yourself' kits launched in the market to entice small business owners to try and build these solar systems themselves.

However, it is essential to work with a solar provider when installing solar panels to get the best outcome—as in any industrial field, consulting with a solar power expert would help you optimize costs and gain maximum benefits.


Points to Explore Before Going Solar

Amount of Electricity Consumed

There are two main points to ponder over; "enough for one day" and "future years to come”. You could either sell excess energy produced to your local electricity supplier, which would add to your savings, or it could be stored with the help of li-ion batteries and utilized in the time of little to no sunshine.


Financing Solar Power for Businesses

Commercial solar power providers offer multiple business plans that would be best suited to the scale of your business. You can choose the better alternative for your business depending on how much discretionary cash you have and your solar infrastructure size. The size of the infrastructure will also depend on whether you want to gain dramatic results in terms of cost-saving or opt for low-cost start-ups and gain a more extended return on investment.

Some enterprises buy solar equipment with cash or loans. This method would give you tax credits and incentives, thus offering you a higher return on investment (ROI).

Another direction you could choose is going into a Power Purchase Agreement (PPA) with a solar energy provider and purchasing electricity from them at a lesser commercial cost. In a PPA, the developer looks after designing, permissions, financing, and installing the system for a meager amount.

Details of your precise business requirements are vital to analyze the cost and time of ROI of the solar energy system. It would depend on the place you are at and the size of your system. To get these exact details, hire the best solar energy consultant for your exact needs.


Important Steps to Remember

Step 1:

Outline your goals for a stable, sustainable, and financially sound future. Make sure that going solar is beneficial for your business. Calculate whether your region's utility costs are higher and hurt your business financially; whether there is ample storage space around your business to keep all the equipment. And whether adopting a  green  profile improves your goodwill in your local community.

Step 2:

Collect data on your electricity usage of at least one year to analyze the operating cost, energy spikes, and consumption patterns. Calculating business losses will aid in understanding the need to switch to solar energy.

Step 3:

Tie up with a commercial solar specialist when making the switch to solar energy. Often, customers fail to recognize the importance of this step. Avoid contractors who set up solar panels as a side business as they would not understand the intricacies of the job. Check all the references before you partner up with a specialist.

Step 4:

Last thing to keep in mind is thatgetting a solutions provider would make things easier for you. The provider will take care of everything- designing the system, finances, grid connection, and system maintenance. Ensure that you have a provider with sound support and has a portfolio of proven experience in solar infrastructure per your business needs.


Frequently Asked Questions

How much does solar cost?

Ten years ago, the cost of a residential solar system was upwards of $50,000 for an average of 6 kilowatt-hour. Now, with a 62% average annual decrease, it ranges anywhere between $16,200 to $21,000.

How does commercial solar work?

Solar panels are made up of photovoltaic (PV) panels in a grid-like pattern that captures sunlight and converts it into electricity. The PV cells are made up of silicon with a positive and negative field that creates an electric field.

Are commercial solar panels worth it?

Commercial solar panels have a lifespan of 25-30 years. Although solar panels cost a lot initially, over the years, utility cost of your business will go down. There are also tax credits and incentives that the government offers when installing solar panels.

Spotlight

CERIT CLEAN ENERGY

CERIT CLEAN ENERGY is an innovative and specialised Renewable's and Sustainable Energy company. We aim to provide our clients with renewable/ Sustainable energy engineering training, project development/ Management consulting, engineering design, construction management, commissioning and Product Research and Development.

OTHER ARTICLES
Sustainability

Why Picking an Established and Credible Solar Installer Matters

Article | July 7, 2023

With the popularity of solar increasing across the country, the number of solar installers has been multiplying. Unfortunately, many fly-by-night companies with minimal installation experience or larger national firms with little market history are trying to capitalize on the industry’s growth. In addition, the sheer volume of installation partners that consumers have to choose from can result in a great deal of buyer confusion. More choices, more issues As the number of solar installers has gone up, so have complaints and issues related to providers and their service. Recently, the Minnesota Department of Labor and Industry reached terms with Empire Solar Group LLC’s trustees, a national solar installer that went bankrupt earlier this year, leaving 45 homeowners in Minnesota with projects in various levels of incompletion. Unfortunately, they’re not alone, as many other consumers have also fallen into precarious situations after companies using high-pressure sales tactics have been unable to deliver on the work. Michael Allen, CEO of All Energy Solar, says, “He’s angered that companies go out of business and face no fines.” Allen and other established industry leaders have done their best to help out customers caught in the middle of an installer’s bankruptcy issues, but there is only so much they can do. What protections do consumers have? In some cases, states have put into place protections for consumers; for example, in Minnesota, consumers stranded with uncompleted projects can get access to the state’s Contractor Recovery Fund, which receives money from licensing fees to help offset these costs. But that is of little comfort for those trying to determine what partner to choose for their project. The best bet When picking a solar installation partner, your best bet is to avoid those with high-pressure sales tactics, “too-good-to-be-true” pricing, or ones with little to no installation experience. Don’t simply trust the sales rep, do a little of your own research to see what other customers are saying. Looking for a record of successfully completed projects and businesses with state and national certifications can be another way to confirm credibility.

Read More
Solar+Storage

The Future of Renewable Energy

Article | June 14, 2022

Renewable energy is the energy generated from natural resources on Earth that are neither limited or exhaustible, such as wind and sun. Thus, renewable energy is an alternative to conventional energy based on fossil fuels and is generally less harmful to the environment. Some Sources of Renewable Energy Solar: Solar energy is created by capturing sunlight's radiant energy and turning it into heat, electricity, or hot water. Photovoltaic (PV) systems utilize solar cells to convert direct sunlight into energy. The significant advantage of solar energy is that it is functionally infinite. There is an infinite supply of solar energy with the technology to harvest it, making fossil fuels obsolete. Using solar energy instead of fossil fuels can also help improve public health and environmental conditions. In addition, solar energy has the potential to eliminate energy expenses in the long run, as well as decrease your energy bills in the short term. Many government, state, and local governments also provide rebates or tax credits to encourage investment in solar energy. To know more about Solar Energy, click here. Although solar energy can save you money in the long term, it has a high upfront cost out of reach for most households. In addition, for personal houses, homeowners should also have enough sunlight and space to install their solar panels, restricting who can realistically adopt this technology on an individual level. Wind: Wind farms use turbines to generate wind energy and convert it to electricity. There are many types of systems used to convert wind energy, and each one is unique. Commercial-grade wind-powered generating systems can power a wide range of organizations, while single-wind turbines are utilized to complement current energy organizations. Utility-scale wind farms, which are purchased on a contract or wholesale basis, are another option. Wind energy is technically a kind of solar energy. Wind is caused by temperature variations in the atmosphere and the rotation of the Earth, and the geography of the planet. Wind energy is a clean energy source, which means it does not damage the environment in the same way other types of energy do. Wind energy does not emit carbon dioxide or any other hazardous pollutants that can degrade the environment or damage human health, such as smog, acid rain, or other heat-trapping gases. Investment in wind energy technology can also lead to new employment opportunities and job training, as farm turbines should be serviced and maintained to remain operational. Wind farms are often constructed in rural or isolated locations, far from busy towns where electricity is most required. Wind energy must be transmitted through transition lines, which raises the cost. Even though wind turbines produce relatively little pollution, some cities are opposed to them because they dominate skylines and create noise. In addition, wind turbines can pose a danger to nearby animals, such as birds, who are occasionally killed when they collide with the turbine's arms while flying. Hydroelectric: When it comes to hydroelectric power, most people think of dams. Pumped-storage hydropower is the process through which water flows through the turbines of a dam to generate energy. Run-of-river hydropower utilizes a canal to funnel water through rather than a dam to power it. Hydroelectric power is very flexible since it can be generated utilizing both large-scale projects such as the Hoover Dam and small-scale projects such as underwater turbines and lower dams on rivers and streams. In addition, because hydroelectric power does not emit pollutants, it is a far more ecologically beneficial energy source for our environment. The majority of hydroelectric power plants use more energy than they generate. To pump water, the storage systems may need to utilize fossil fuels. Although hydroelectric power does not contaminate the air, it disrupts rivers. It harms the animals that dwell in them by changing water levels, currents, and migratory routes for many fish and other freshwater ecosystems. Geothermal: Geothermal heat is heat trapped under the Earth's crust due to the Earth's creation 4.5 billion years ago and radioactive decay. Large quantities of this heat can sometimes escape spontaneously, but only all at once, resulting in well-known phenomena like volcanic explosions and geysers. This heat can be collected and utilized to generate geothermal energy by utilizing steam generated by heated water pumping under the surface, which rises to the surface and can power a turbine. Geothermal energy is not as common as other forms of renewable energy, but it has considerable energy supply potential. In addition, it has a little environmental impact because it can be constructed underground. As geothermal energy is replenished naturally, it is not in danger of depletion. When it comes to the drawbacks of geothermal energy, the cost is a significant issue. Not only is the infrastructure expensive to construct, but it is also vulnerable to earthquakes in some parts of the world. Is renewable energy capable of powering the future? Renewable energy technologies already account for approximately 26% of total global power, and the International Energy Agency (IEA) predicts that this will rise to 30% by 2024. According to the IEA, by 2024, the world's renewable energy capacity will have increased by 1,200 GW, which is equivalent to the capacity of the whole United States. Expert analysis indicates that a completely sustainable energy system can be achieved worldwide over the next 30 years; the difficult part is persuading countries to change their ways. What is the significance of renewable energy in the future? There are many reasons why renewable energy is critical for the future, particularly given the negative impact that fossil fuels have on our world. This includes, among other things, air and water pollution, habitat and wildlife loss, and greenhouse gas emissions that contribute to global warming. Here are a few examples of why renewable energy is so important: Lowers air pollution: By lowering air pollution, renewable energy may help improve people's health worldwide. Air pollution is a significant environmental problem, particularly in metropolitan areas and developing countries, and the World Health Organization estimates that 7 million people die prematurely due to inhaling contaminated air each year. Lowers the danger of floods and droughts: Using renewable energy can also lower the risk of floods and droughts throughout the world. For example, many gallons of water are required to operate power plants that burn fossil fuels, leading to droughts in many low-rainfall nations. In contrast, climate change induced by the combustion of fossil fuels produces greater rainfall in other areas, resulting in catastrophic floods. Promotes local economies: The development of renewable energy technologies also contributes to creating new employment and financing for local economies. As a result, more employment in renewable energy is being generated every day, and they are only expected to grow more secure as technology advances. Lower long-term costs: Clean energy sources are becoming more appealing investment possibilities than fossil fuels. With the growing popularity of renewable energy sources like solar and wind power, investment is low risk, even with hefty initial installation costs. They can effectively generate electricity "for free" for decades after installation. A future powered by renewable energy will result in a more sustainable environment and help many local economies in ways that fossil fuels cannot. What is the best future renewable energy source? Solar energy and wind power, together with hydropower, are considered the greatest renewable energy sources for powering our future planet. They are the cleanest renewable resources and are ideal for household, industrial, and national grid uses. They can offer limitless quantities of clean energy to the world, but they can also boost local economies. Wind power technology has already resulted in a significant rise in employment and helps to put money back into local communities, with additional jobs being generated with each installation. Solar energy can benefit everyone who has sufficient space for PV panels, and it is much less intrusive than wind turbines. And, although initial installation prices can be high, they will start to fall as solar becomes more common. Is it possible for the world to survive on 100% renewable energy in the future? The world may survive on 100% renewable energy in the future, but this will not be without challenges. To read more about the challenges in renewable energy click here. Each nation will have to go through its transition phase, which will be relatively simple for some and more difficult for others. Others may be hesitant even to begin the transition if their economy is highly dependent on fossil fuels. The world's future can be unpredictable, and it's impossible to tell if it's possible to live completely on renewable energy. Still, we can help make the planet a better place by switching our homes' electricity to renewable energy. In the future, how efficient will renewable energy be? Renewable energy efficiency is determined by how much energy can be generated in a given period and how much it costs to generate this energy. Despite the fact that all renewable energy technologies have high initial costs, the costs of generating energy are considerably lower than the costs of obtaining fossil fuels. With the continuous advancement of renewable energy technology, this efficiency will only increase, bringing us closer to a bright future for renewable energy. What are the future benefits and drawbacks of renewable energy? Benefits: Renewable energy technologies have an infinite supply — as long as we have the sun, wind, water, and natural heat, we have renewable energy technologies. Reduced global warming impacts, such as floods, severe storms, droughts, and other extreme weather conditions. Fewer air contaminants, which lead to improved respiratory health. Reduced greenhouse gas emissions result in a more stable climate. More employment for local areas. More robust supply, which assists in the elimination of power outages. Enhanced accessibility. Lower energy costs, particularly with renewable energy prices falling. Drawbacks: Expensive initial installation costs. Intermittent - depending on the renewable energy source, they will not provide electricity 24 hours a day, seven days a week. Solar energy, for example, cannot be produced at night, and wind is not always powerful enough to spin a turbine. More advancements in storage solutions are required - renewable energy storage can be costly, but this is expected to improve as technology advances. Geographical constraints - some areas will be more suited to renewable energy sources than others. What factors will influence the future of renewable energy? The environmental advantages and the cost of transition are the two most important factors determining the future of renewable energy. The benefits of renewable energy sources often exceed the drawbacks, yet the high initial costs frequently discourage people from investing. Luckily, as environmental problems become more generally recognized, renewable energy prices, including installation costs, are falling, providing greater incentive to switch to renewable energy sources. So, what does the future of renewable energy hold? Renewable energy is expected to grow in popularity over the next decade, attempting to minimize the impacts of climate change. This may take some time, but we will have to switch to renewable energy to fight against climate change and protect our environment. FAQ Why is renewable energy the future? Alternative energy sources emit much less Carbon dioxide than natural gas, coal, and other fossil fuels. Switching to renewable energy sources for electricity production will benefit the environment by delaying and reversing climate change. Is renewable energy a good investment for business? There are many benefits to investing in renewable energy sources for businesses, including increased marketing possibilities, fewer emissions, cheaper energy costs, and many more. Businesses must lead the way in becoming more sustainable by expanding their usage of renewable energy. What is the best renewable energy source for the future? Solar energy and wind power, together with hydropower, are considered the greatest renewable energy sources for powering our future planet. They are the cleanest renewable resources and are ideal for household, industrial, and national grid uses. They can offer limitless quantities of clean energy to the world, but they can also boost local economies. Wind power technology has already resulted in a significant rise in employment and helps to put money back into local communities, with additional jobs being generated with each installation. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is renewable energy the future?", "acceptedAnswer": { "@type": "Answer", "text": "Alternative energy sources emit much less Carbon dioxide than natural gas, coal, and other fossil fuels. Switching to renewable energy sources for electricity production will benefit the environment by delaying and reversing climate change." } },{ "@type": "Question", "name": "Is renewable energy a good investment for business?", "acceptedAnswer": { "@type": "Answer", "text": "There are many benefits to investing in renewable energy sources for businesses, including increased marketing possibilities, fewer emissions, cheaper energy costs, and many more. Businesses must lead the way in becoming more sustainable by expanding their usage of renewable energy." } },{ "@type": "Question", "name": "What is the best renewable energy source for the future?", "acceptedAnswer": { "@type": "Answer", "text": "Solar energy and wind power, together with hydropower, are considered the greatest renewable energy sources for powering our future planet. They are the cleanest renewable resources and are ideal for household, industrial, and national grid uses. They can offer limitless quantities of clean energy to the world, but they can also boost local economies. Wind power technology has already resulted in a significant rise in employment and helps to put money back into local communities, with additional jobs being generated with each installation." } }] }

Read More
Strategy and Best Practices, Industry Updates

More Solar Ready To Help Power Pumping For SA Water

Article | August 16, 2022

SA Water’s electricity supply is about to become greener and cheaper again with the addition of another major solar power system, and an even bigger installation to soon follow. The utility says more 7,300 solar panels installed at the second pump station on its pipeline between Swan Reach and Stockwell are now connected and ready to go. “The Swan Reach to Stockwell Pipeline spans across more than 50 kilometres inland from the mighty Murray across to the northern Barossa area, and therefore requires significant energy to pump clean, safe drinking water across such large distances,” said SA Water’s Nicola Murphy While the total capacity of this new solar farm wasn’t provided, Ms. Murphy said it will generate approximately 5,224 megawatt hours of clean, green energy annually. There’s more solar energy to come for this section of pipeline, with a further 16,000 panels currently being connected at the first pump station.

Read More
Energy

The Role of AI Technology in the Renewable Energy Sector

Article | July 16, 2022

Machine learning and artificial intelligence (AI) are two of the most commonly used commercial phrases these days. As a result, companies across sectors are searching for methods to include them in order to optimize and automate their key operations. The energy sector is no exception! Indeed, throughout the years, renewable energy industries (wind, solar, hydro, nuclear) have substantially gained from the potential of machine learning. They were able to reduce their expenses, make better projections, and raise the rate of return on their portfolio. And this tendency is just going to gain momentum. If your company is in the energy industry or utilizes a lot of power, machine learning and AI can help you improve your business performance. But how precisely? Let's get started. Ways in Which AI and Machine Learning are Changing Energy Sector There are a few methods that machine learning and AI can be applied to positively improve the energy industry. Here are a few popular applications currently under development. Predictive Maintenance AI helps match energy output with demand and ensure power grid stability and resilience.In 2003, a low-hanging high-voltage electricity line hit an overgrown tree in Ohio, causing a widespread blackout. There was no power system alarm and no sign of the incident. The electric company didn't notice until three additional power lines failed. This carelessness ultimately brought down the whole grid. The 50 million-person blackout lasted two days. Eleven individuals died, and $6 billion was lost. Predictive maintenance can be implemented using machine learning and IoT Sensors gather operational time series data from electricity lines, equipment, and stations (data accompanied by a timestamp). Machine learning algorithms can then forecast when a component will fail (or n-steps). It can also anticipate machinery's remaining usable life or future breakdown. These algorithms detect machine failure, eliminate blackouts or downtimes, improve maintenance procedures, and reduce maintenance expenses. Grid Management Grid management is a promising AI application in energy. Complex networks distribute electricity to users (also known as the power grid). Generation and demand must always match in the electrical system. Other issues, like blackouts and system breakdowns, can occur. Despite being ancient, pumped hydroelectric storage is the most common way to store energy. It operates by moving water upwards and letting it fall into turbines. Renewable energy makes predicting the grid's power generation challenging. After all, it is affected by a variety of things, like sunlight and wind. Demand Response Large demand shifts can be expensive for nations that depend on renewable energy. As nations migrate to green energy, it's harder to adapt to demand fluctuations. Germany plans to use 80% renewable energy by 2050. Countries such as Germany will encounter two major challenges Demand fluctuations: On some days or times of the year, power consumption soars (on Christmas, for example) Weather volatility: Without wind or clear skies, it might be hard to meet electrical demand. In both circumstances, more stations or fossil fuel-powered facilities must meet demand Solving demand response issues Many nations are partnering with businesses to examine weather forecasts, power demand, etc. Germany's EWeLiNE project forecasts wind and solar energy at a specific moment. This enables the government to use non-renewable energy to meet additional power demand. They utilize enormous historical data sets to train machine learning algorithms, as well as data from wind turbines or solar panels, to properly balance supply and demand. Closing Lines AI increases the potential of humans. Several renewable energy producers are investing in artificial intelligence to boost their businesses.There are numerous uses of artificial intelligence in renewable energy. The fundamental purpose of AI integrated systems is to reduce forecasting issues and incorporate renewable energy into the central energy grid as effectively as possible. AI can also assist renewable energy providers in developing successful plans and policies based on present energy consumption and demand.

Read More

Spotlight

CERIT CLEAN ENERGY

CERIT CLEAN ENERGY is an innovative and specialised Renewable's and Sustainable Energy company. We aim to provide our clients with renewable/ Sustainable energy engineering training, project development/ Management consulting, engineering design, construction management, commissioning and Product Research and Development.

Related News

Energy

Greenwood Sustainable Infrastructure (GSI)-Led Joint Initiative with Ocean Man First Nation to Build One of the Largest Solar Projects in Canada

PR Newswire | January 25, 2024

Greenwood Sustainable Infrastructure LLC (GSI), one of the renewable energy subsidiaries of Libra Group, announced that Iyuhána Solar (Iyuhána), a GSI-led partnership with Saturn Power Inc. and Ocean Man First Nation, has been awarded a Power Purchase Agreement (PPA) to construct and operate a 100-megawatt (MWac) utility-scale solar facility in Saskatchewan, Canada. Developed in partnership with Ocean Man First Nation, the project will be one of Canada's top 10 solar facilities by size. Under an exclusive PPA, the largest with a utility in Canada since 2015, Iyuhána plans to invest approximately $200 million (CDN) to construct the solar facility, which it will operate, supplying generated power to the principal municipal utility company, SaskPower, for 25 years. Located in the Rural Municipality of Estevan in southeast Saskatchewan, this emissions-free solar facility will produce enough power for the equivalent of approximately 25,000 homes. "We are proud to bring the transformative power of solar energy to Saskatchewan by working with partners such as Ocean Man First Nation," said Mazen Turk, CEO of GSI. "This unique collaboration shows the power of renewable energy to harness resources and empower communities responsibly. This work is core to our ethos as a Libra company, and we look forward to continuing to help support a clean energy future across Canada and beyond." As a founding partner, Ocean Man First Nation will have an ownership stake in Iyuhána Solar. Band members will also receive specialized training to maintain the solar facilities and employment opportunities with the project. Additionally, partnering with two of Saskatchewan's leading post-secondary academic institutions, Iyuhána will provide scholarships, internships, and direct research projects in clean energy to benefit the community. "Our partnership with GSI and SaskPower will bring great opportunities for Ocean Man First Nation, including employment and revenue that will provide stability and sustainability for our Band," said Chief Connie Big Eagle, Ocean Man First Nation. "We are proud that this project, which is able to generate clean power, will be known as Iyuhána Solar, which, in Nakotah translates to 'everyone' or 'all of us.' This is derived from our Nakotah belief that everyone and everything is related and therefore we must care for each other." While investment in renewable energy grows across Canada, Saskatchewan's clean power supply mix has predominantly consisted of hydro and wind. This is the first of many planned solar projects in the province; by 2035, SaskPower plans to support approximately 3000 MW of new renewable energy capacity in the region. "This new solar facility will play an important role in our path to net-zero by 2050 or sooner," said Rupen Pandya, SaskPower President and CEO. "We are proud of our ongoing collaboration with Indigenous peoples and the critical role they are playing in the successful expansion of renewable energy in our province." GSI is one of four renewable energy subsidiaries of Libra Group, a privately owned, global business group that encompasses 20 businesses in six sectors, including renewable energy, maritime, aerospace and more. The Group's renewable energy portfolio encompasses approximately 3.5 gigawatts (GW) of projects owned, developed, or pending development in 10 countries, including solar, wind, battery storage, and waste-to energy projects. This is the second partnership with an indigenous community led by a Libra Group subsidiary. "Libra Group is proud of this novel partnership, which has come together through shared values and a commitment to driving economic growth and positive outcomes for communities," said Libra Group's CEO Manos Kouligkas. "Sustainability is core to our global business, and we look forward to continuing to leverage synergies across our six sectors in 60 countries with agility and impact." Last year, GSI acquired Saturn Power Inc.'s solar and battery development portfolios, including its team of seasoned developers and an approximate 1.4-gigawatt (GW) pipeline of early- to late-stage solar and energy storage projects. Today, GSI has a footprint across Canada and in 12 U.S. states. About Greenwood Sustainable Infrastructure Greenwood Sustainable Infrastructure (GSI) is one of the clean energy subsidiaries of Libra Group. GSI is a renewable energy company focused on the development, construction, and operation of distributed generation and utility-scale solar energy and battery storage projects in North America. As of January 2024, the company developed approximately 388 MW DC across 71 renewable energy projects, many of which are still owned or operated by GSI and have an additional project pipeline of 1.6 GW. GSI's seasoned team has a proven track record of investing in power assets and partnering with multiple top-tiered investors. For more information on Greenwood Sustainable Infrastructure (GSI), visit: http://www.greenwoodinfra.com/ About Ocean Man First Nation The Ocean Man First Nation is a Nakota, Cree, and Saulteaux Band Government in southeast Saskatchewan. OMFN is led by Chief Connie Big Eagle & Council and features a population of 565 members. Ocean Man First Nation created a renewable energy company in 2019 called Second Wind Power. The name Second Wind Power reflects Ocean Man First Nation's history of relocating, re-establishing and starting over as a new community since 1989. About Libra Group Libra Group is a privately owned, global business group encompassing 20 businesses predominately focused on aerospace, renewable energy, maritime, real estate, hospitality, and diversified investments. With assets and operations in nearly 60 countries, the Group applies the strength of its global network and capabilities to deliver cross-sector insights and growth at scale.

Read More

Energy

ACE Green completes successful handover of emissions-free lead recycling facility to ACME

PR Newswire | January 16, 2024

ACE Green Recycling (ACE) has successfully delivered the first of three phases of its proprietary zero-emissions modular lead battery recycling technology to ACME Metal Enterprise's facility in Keelung City, Taiwan. As part of the agreement, ACE will provide equipment and proprietary chemicals to enable ACME to produce "GreenLead™" in a safe, sustainable and economical way. This marks the second successful deployment of ACE's pioneering lead battery recycling technology. ACME is Taiwan's leading lead recycler, with over 40 years of successful operation. Through its partnership with ACE, ACME will become one of the largest producers of emissions-free lead, with a capacity to recycle 20,000 metric tonnes per year of lead batteries to produce about 12,000 metric tonnes of environmentally friendly "GreenLead™", generating nearly USD 24 million in annual revenue for the Taiwanese company. Of the deal, Linus P. Lu, Managing Director of ACME, said: "We are excited and pleased to have successfully completed the installation of ACE's lead battery recycling technology at our facility. This marks an important milestone for ACME as we build our capacity to provide sustainable lead recycling capabilities – not just for our company but for the entire lead battery ecosystem as well." Lead batteries are a key element in the automotive and telecoms industries, while also playing a crucial role in the energy transition for renewable power storage. Traditionally, lead batteries are recycled via a smelting process which involves operating temperatures of over 1,000°C, producing significant greenhouse gas (GHG) emissions, plus toxic solid waste that must go to landfill. ACE's room temperature recycling technology replaces the smelting furnace, is electrically powered, has zero Scope 1 GHG emissions and reduces solid waste by over 85%. The process will greatly enhance ACME's profitability and minimize their operator and environmental risks. Phase I of the agreement for 2,400 metric tons per annum was successfully handed over to ACME in December 2023, with Phases II and III to increase annual capacity to around 20,000 metric tonnes, which will proceed later this year. During the 10-year contractual duration of 10 years, these facilities will enable the recycling of over 14 million scrap batteries. This will prevent the emission of nearly 120 million kilograms of CO2e, stop 18 million kilograms of solid waste from going into landfill and enable recycling of more than 14 million kilograms of plastics, while providing high-paying, sustainable green jobs for the community. This collaboration with ACME demonstrates ACE's deep commitment to the battery market. Sales of GreenLead™ from ACME's facility will reach the key markets of Taiwan and Japan, including leading battery OEMs across Asia. "It is our goal as a battery recycling technology platform to provide all players in the ecosystem a way to meet not just their commercial goals but their environmental ones as well," said ACE Green CEO Nishchay Chadha. "We develop our carbon-free recycling technologies to meet the industry's global aspirations to be responsible stakeholders in the mission of meeting net-zero targets." Lead batteries remain an essential component of global electrification. By successfully deploying its green solutions, ACE will continue to support and champion the lead industry and provide not just a profitable solution, but a sustainable one for all secondary lead producers. ACE is a market leader in both lead and lithium-ion battery recycling technologies and is partnering with companies worldwide to help them set up environmentally friendly battery recycling facilities. The company has a team of over 70 people and is dual headquartered in the US and Singapore. Forward-Looking Statements This document contains certain forward-looking statements regarding ACE's technological capabilities and future business aspirations. All statements are based upon current ACE expectations and involve a number of business and technical risks and uncertainties that could cause actual results to differ materially from anticipated results described, implied or projected in any forward-looking statement, including, without limitation, regulatory approvals, unexpected changes in technologies, uncertainties inherent in technological development, scaling and roll out, intellectual property protection, and sources and availability of third-party financing.

Read More

Energy

Eletopia Revolutionizes Energy Storage Solutions in the US

PR Newswire | January 15, 2024

Eletopia, a leading provider of smart energy storage solutions, is transforming the energy storage market with innovative technology. Integrating advanced battery management, energy conversion, and intelligent energy operation, Eletopia offers comprehensive solutions, redefining home energy management. In an era prioritizing energy reliability and sustainability, Eletopia's whole-house backup power solution will impact the power plans for U.S. homeowners. Providing security during outages, the H2 series Hybrid Inverter efficiently convert solar energy during low consumption periods. Through the B2 series High Voltage Battery and the mobile storage unit S36 series Portable Power Station, they stored electricity ensures uninterrupted power for essential household appliances, electronics, and systems. Eletopia's Smart Backup Unit (SBU) seamlessly switches between solar, grid, and generator power sources, ensuring continuous functionality. Eletopia's solution guarantees reliable backup power, keeping households operational. At the core of Eletopia's offering is the All-in-one Smart Energy Management System (EMS), empowering homeowners with complete control of their energy usage. Offering features like power station monitoring, AI diagnostics, AI Saving, and more, this system provides efficient energy management for every home. Eletopia prioritizes safety, efficiency, and profitability. Their solutions integrate power generation, energy storage, consumption, and operational services, amplifying the value of energy storage. Leveraging advanced battery management, energy conversion, and smart storage technology, Eletopia enables homeowners to optimize resources for a greener, sustainable future. Eletopia credits its success to a diverse team of American and global experts in the energy sector. From battery technologists to marketing specialists, their collective expertise ensures cutting-edge solutions tailored for American homeowners. Beyond innovation, Eletopia focuses on customer-centricity. Collaborating closely with clients, they address specific requirements, ensuring project success and seamless operation. This commitment, coupled with exceptional service, has established Eletopia as a trusted industry partner. About Eletopia: Eletopia specializes in comprehensive, smart energy storage solutions merging power generation, energy storage, consumption, and operational services. Our suite of cutting-edge technologies—advanced battery management, energy conversion, equipment integration, smart storage management, and operational expertise—aims to increase the value of energy storage. Committed to becoming a global leader, we serve partners and end-users seeking professional, innovative brands in smart energy management.

Read More

Energy

Greenwood Sustainable Infrastructure (GSI)-Led Joint Initiative with Ocean Man First Nation to Build One of the Largest Solar Projects in Canada

PR Newswire | January 25, 2024

Greenwood Sustainable Infrastructure LLC (GSI), one of the renewable energy subsidiaries of Libra Group, announced that Iyuhána Solar (Iyuhána), a GSI-led partnership with Saturn Power Inc. and Ocean Man First Nation, has been awarded a Power Purchase Agreement (PPA) to construct and operate a 100-megawatt (MWac) utility-scale solar facility in Saskatchewan, Canada. Developed in partnership with Ocean Man First Nation, the project will be one of Canada's top 10 solar facilities by size. Under an exclusive PPA, the largest with a utility in Canada since 2015, Iyuhána plans to invest approximately $200 million (CDN) to construct the solar facility, which it will operate, supplying generated power to the principal municipal utility company, SaskPower, for 25 years. Located in the Rural Municipality of Estevan in southeast Saskatchewan, this emissions-free solar facility will produce enough power for the equivalent of approximately 25,000 homes. "We are proud to bring the transformative power of solar energy to Saskatchewan by working with partners such as Ocean Man First Nation," said Mazen Turk, CEO of GSI. "This unique collaboration shows the power of renewable energy to harness resources and empower communities responsibly. This work is core to our ethos as a Libra company, and we look forward to continuing to help support a clean energy future across Canada and beyond." As a founding partner, Ocean Man First Nation will have an ownership stake in Iyuhána Solar. Band members will also receive specialized training to maintain the solar facilities and employment opportunities with the project. Additionally, partnering with two of Saskatchewan's leading post-secondary academic institutions, Iyuhána will provide scholarships, internships, and direct research projects in clean energy to benefit the community. "Our partnership with GSI and SaskPower will bring great opportunities for Ocean Man First Nation, including employment and revenue that will provide stability and sustainability for our Band," said Chief Connie Big Eagle, Ocean Man First Nation. "We are proud that this project, which is able to generate clean power, will be known as Iyuhána Solar, which, in Nakotah translates to 'everyone' or 'all of us.' This is derived from our Nakotah belief that everyone and everything is related and therefore we must care for each other." While investment in renewable energy grows across Canada, Saskatchewan's clean power supply mix has predominantly consisted of hydro and wind. This is the first of many planned solar projects in the province; by 2035, SaskPower plans to support approximately 3000 MW of new renewable energy capacity in the region. "This new solar facility will play an important role in our path to net-zero by 2050 or sooner," said Rupen Pandya, SaskPower President and CEO. "We are proud of our ongoing collaboration with Indigenous peoples and the critical role they are playing in the successful expansion of renewable energy in our province." GSI is one of four renewable energy subsidiaries of Libra Group, a privately owned, global business group that encompasses 20 businesses in six sectors, including renewable energy, maritime, aerospace and more. The Group's renewable energy portfolio encompasses approximately 3.5 gigawatts (GW) of projects owned, developed, or pending development in 10 countries, including solar, wind, battery storage, and waste-to energy projects. This is the second partnership with an indigenous community led by a Libra Group subsidiary. "Libra Group is proud of this novel partnership, which has come together through shared values and a commitment to driving economic growth and positive outcomes for communities," said Libra Group's CEO Manos Kouligkas. "Sustainability is core to our global business, and we look forward to continuing to leverage synergies across our six sectors in 60 countries with agility and impact." Last year, GSI acquired Saturn Power Inc.'s solar and battery development portfolios, including its team of seasoned developers and an approximate 1.4-gigawatt (GW) pipeline of early- to late-stage solar and energy storage projects. Today, GSI has a footprint across Canada and in 12 U.S. states. About Greenwood Sustainable Infrastructure Greenwood Sustainable Infrastructure (GSI) is one of the clean energy subsidiaries of Libra Group. GSI is a renewable energy company focused on the development, construction, and operation of distributed generation and utility-scale solar energy and battery storage projects in North America. As of January 2024, the company developed approximately 388 MW DC across 71 renewable energy projects, many of which are still owned or operated by GSI and have an additional project pipeline of 1.6 GW. GSI's seasoned team has a proven track record of investing in power assets and partnering with multiple top-tiered investors. For more information on Greenwood Sustainable Infrastructure (GSI), visit: http://www.greenwoodinfra.com/ About Ocean Man First Nation The Ocean Man First Nation is a Nakota, Cree, and Saulteaux Band Government in southeast Saskatchewan. OMFN is led by Chief Connie Big Eagle & Council and features a population of 565 members. Ocean Man First Nation created a renewable energy company in 2019 called Second Wind Power. The name Second Wind Power reflects Ocean Man First Nation's history of relocating, re-establishing and starting over as a new community since 1989. About Libra Group Libra Group is a privately owned, global business group encompassing 20 businesses predominately focused on aerospace, renewable energy, maritime, real estate, hospitality, and diversified investments. With assets and operations in nearly 60 countries, the Group applies the strength of its global network and capabilities to deliver cross-sector insights and growth at scale.

Read More

Energy

ACE Green completes successful handover of emissions-free lead recycling facility to ACME

PR Newswire | January 16, 2024

ACE Green Recycling (ACE) has successfully delivered the first of three phases of its proprietary zero-emissions modular lead battery recycling technology to ACME Metal Enterprise's facility in Keelung City, Taiwan. As part of the agreement, ACE will provide equipment and proprietary chemicals to enable ACME to produce "GreenLead™" in a safe, sustainable and economical way. This marks the second successful deployment of ACE's pioneering lead battery recycling technology. ACME is Taiwan's leading lead recycler, with over 40 years of successful operation. Through its partnership with ACE, ACME will become one of the largest producers of emissions-free lead, with a capacity to recycle 20,000 metric tonnes per year of lead batteries to produce about 12,000 metric tonnes of environmentally friendly "GreenLead™", generating nearly USD 24 million in annual revenue for the Taiwanese company. Of the deal, Linus P. Lu, Managing Director of ACME, said: "We are excited and pleased to have successfully completed the installation of ACE's lead battery recycling technology at our facility. This marks an important milestone for ACME as we build our capacity to provide sustainable lead recycling capabilities – not just for our company but for the entire lead battery ecosystem as well." Lead batteries are a key element in the automotive and telecoms industries, while also playing a crucial role in the energy transition for renewable power storage. Traditionally, lead batteries are recycled via a smelting process which involves operating temperatures of over 1,000°C, producing significant greenhouse gas (GHG) emissions, plus toxic solid waste that must go to landfill. ACE's room temperature recycling technology replaces the smelting furnace, is electrically powered, has zero Scope 1 GHG emissions and reduces solid waste by over 85%. The process will greatly enhance ACME's profitability and minimize their operator and environmental risks. Phase I of the agreement for 2,400 metric tons per annum was successfully handed over to ACME in December 2023, with Phases II and III to increase annual capacity to around 20,000 metric tonnes, which will proceed later this year. During the 10-year contractual duration of 10 years, these facilities will enable the recycling of over 14 million scrap batteries. This will prevent the emission of nearly 120 million kilograms of CO2e, stop 18 million kilograms of solid waste from going into landfill and enable recycling of more than 14 million kilograms of plastics, while providing high-paying, sustainable green jobs for the community. This collaboration with ACME demonstrates ACE's deep commitment to the battery market. Sales of GreenLead™ from ACME's facility will reach the key markets of Taiwan and Japan, including leading battery OEMs across Asia. "It is our goal as a battery recycling technology platform to provide all players in the ecosystem a way to meet not just their commercial goals but their environmental ones as well," said ACE Green CEO Nishchay Chadha. "We develop our carbon-free recycling technologies to meet the industry's global aspirations to be responsible stakeholders in the mission of meeting net-zero targets." Lead batteries remain an essential component of global electrification. By successfully deploying its green solutions, ACE will continue to support and champion the lead industry and provide not just a profitable solution, but a sustainable one for all secondary lead producers. ACE is a market leader in both lead and lithium-ion battery recycling technologies and is partnering with companies worldwide to help them set up environmentally friendly battery recycling facilities. The company has a team of over 70 people and is dual headquartered in the US and Singapore. Forward-Looking Statements This document contains certain forward-looking statements regarding ACE's technological capabilities and future business aspirations. All statements are based upon current ACE expectations and involve a number of business and technical risks and uncertainties that could cause actual results to differ materially from anticipated results described, implied or projected in any forward-looking statement, including, without limitation, regulatory approvals, unexpected changes in technologies, uncertainties inherent in technological development, scaling and roll out, intellectual property protection, and sources and availability of third-party financing.

Read More

Energy

Eletopia Revolutionizes Energy Storage Solutions in the US

PR Newswire | January 15, 2024

Eletopia, a leading provider of smart energy storage solutions, is transforming the energy storage market with innovative technology. Integrating advanced battery management, energy conversion, and intelligent energy operation, Eletopia offers comprehensive solutions, redefining home energy management. In an era prioritizing energy reliability and sustainability, Eletopia's whole-house backup power solution will impact the power plans for U.S. homeowners. Providing security during outages, the H2 series Hybrid Inverter efficiently convert solar energy during low consumption periods. Through the B2 series High Voltage Battery and the mobile storage unit S36 series Portable Power Station, they stored electricity ensures uninterrupted power for essential household appliances, electronics, and systems. Eletopia's Smart Backup Unit (SBU) seamlessly switches between solar, grid, and generator power sources, ensuring continuous functionality. Eletopia's solution guarantees reliable backup power, keeping households operational. At the core of Eletopia's offering is the All-in-one Smart Energy Management System (EMS), empowering homeowners with complete control of their energy usage. Offering features like power station monitoring, AI diagnostics, AI Saving, and more, this system provides efficient energy management for every home. Eletopia prioritizes safety, efficiency, and profitability. Their solutions integrate power generation, energy storage, consumption, and operational services, amplifying the value of energy storage. Leveraging advanced battery management, energy conversion, and smart storage technology, Eletopia enables homeowners to optimize resources for a greener, sustainable future. Eletopia credits its success to a diverse team of American and global experts in the energy sector. From battery technologists to marketing specialists, their collective expertise ensures cutting-edge solutions tailored for American homeowners. Beyond innovation, Eletopia focuses on customer-centricity. Collaborating closely with clients, they address specific requirements, ensuring project success and seamless operation. This commitment, coupled with exceptional service, has established Eletopia as a trusted industry partner. About Eletopia: Eletopia specializes in comprehensive, smart energy storage solutions merging power generation, energy storage, consumption, and operational services. Our suite of cutting-edge technologies—advanced battery management, energy conversion, equipment integration, smart storage management, and operational expertise—aims to increase the value of energy storage. Committed to becoming a global leader, we serve partners and end-users seeking professional, innovative brands in smart energy management.

Read More

Events