Energy and water issues: no sign of conservation - I

A golden opportunity in the shape of CPEC projects is being misconstrued as "economic take-off"! We should first accept that all projects, specially energy and water projects, must be efficient and cost-effective otherwise, we will be standing with beggars' bowl when time comes for repayments. Who will ensure that our productivity is going to improve with the coming projects and that benefits will finally trickle down to the common man.

Spotlight

Weatherford

Weatherford is one of the largest multinational oilfield service companies providing innovative solutions, technology and services to the oil and gas industry. The Company operates in over 100 countries and has a network of approximately 1,000 locations, including manufacturing, service, research and development, and training facilities.

OTHER ARTICLES
Sustainability

The Role of AI Technology in the Renewable Energy Sector

Article | July 7, 2023

Machine learning and artificial intelligence (AI) are two of the most commonly used commercial phrases these days. As a result, companies across sectors are searching for methods to include them in order to optimize and automate their key operations. The energy sector is no exception! Indeed, throughout the years, renewable energy industries (wind, solar, hydro, nuclear) have substantially gained from the potential of machine learning. They were able to reduce their expenses, make better projections, and raise the rate of return on their portfolio. And this tendency is just going to gain momentum. If your company is in the energy industry or utilizes a lot of power, machine learning and AI can help you improve your business performance. But how precisely? Let's get started. Ways in Which AI and Machine Learning are Changing Energy Sector There are a few methods that machine learning and AI can be applied to positively improve the energy industry. Here are a few popular applications currently under development. Predictive Maintenance AI helps match energy output with demand and ensure power grid stability and resilience.In 2003, a low-hanging high-voltage electricity line hit an overgrown tree in Ohio, causing a widespread blackout. There was no power system alarm and no sign of the incident. The electric company didn't notice until three additional power lines failed. This carelessness ultimately brought down the whole grid. The 50 million-person blackout lasted two days. Eleven individuals died, and $6 billion was lost. Predictive maintenance can be implemented using machine learning and IoT Sensors gather operational time series data from electricity lines, equipment, and stations (data accompanied by a timestamp). Machine learning algorithms can then forecast when a component will fail (or n-steps). It can also anticipate machinery's remaining usable life or future breakdown. These algorithms detect machine failure, eliminate blackouts or downtimes, improve maintenance procedures, and reduce maintenance expenses. Grid Management Grid management is a promising AI application in energy. Complex networks distribute electricity to users (also known as the power grid). Generation and demand must always match in the electrical system. Other issues, like blackouts and system breakdowns, can occur. Despite being ancient, pumped hydroelectric storage is the most common way to store energy. It operates by moving water upwards and letting it fall into turbines. Renewable energy makes predicting the grid's power generation challenging. After all, it is affected by a variety of things, like sunlight and wind. Demand Response Large demand shifts can be expensive for nations that depend on renewable energy. As nations migrate to green energy, it's harder to adapt to demand fluctuations. Germany plans to use 80% renewable energy by 2050. Countries such as Germany will encounter two major challenges Demand fluctuations: On some days or times of the year, power consumption soars (on Christmas, for example) Weather volatility: Without wind or clear skies, it might be hard to meet electrical demand. In both circumstances, more stations or fossil fuel-powered facilities must meet demand Solving demand response issues Many nations are partnering with businesses to examine weather forecasts, power demand, etc. Germany's EWeLiNE project forecasts wind and solar energy at a specific moment. This enables the government to use non-renewable energy to meet additional power demand. They utilize enormous historical data sets to train machine learning algorithms, as well as data from wind turbines or solar panels, to properly balance supply and demand. Closing Lines AI increases the potential of humans. Several renewable energy producers are investing in artificial intelligence to boost their businesses.There are numerous uses of artificial intelligence in renewable energy. The fundamental purpose of AI integrated systems is to reduce forecasting issues and incorporate renewable energy into the central energy grid as effectively as possible. AI can also assist renewable energy providers in developing successful plans and policies based on present energy consumption and demand.

Read More
Strategy and Best Practices, Industry Updates

Working From Home? Solar Might Be Perfect for You

Article | August 16, 2022

The pandemic emptied out most of America’s offices as workers across the country set up home workstations. Although this looked to be a temporary situation for many, it has become clear that many workers are choosing to continue to work from home, and many businesses are embracing this concept as well. If you’re one of those individuals, you may want to consider adding solar to your home. A shift in power usage According to the National Bureau of Economic Research, “Americans spent $6 billion more on at-home power consumption from April to July 2020 than during normal times, nearly offsetting a decline in business and industrial demand.” The increase in residential consumption was fueled by increased home heating and cooling demands, workers participating in virtual meetings, running computers, printers, lamps, and other electronic devices all day long. This has resulted in a shift in energy costs from corporations to employees, with many workers seeing significant increases in their home utility bills. Capitalizing on higher demand to maximize your system size Solar can be a great way to offset the costs of your home's energy demands. Because your consumption is currently higher than it would be if you were working at your company's office, you have the ability to install a system that will more than cover your electricity needs if and when you do return to a corporate office setting. Although your increased usage means you'll need to add a more extensive solar photovoltaic system to your home to do this, it also provides you with an opportunity to maximize your system's size to meet your needs. Incentives and savings The federal solar tax credit, also known as the investment tax credit (ITC), allows you to deduct 26 percent of the cost of installing a solar energy system from your federal taxes. However, that number falls to 22 percent in 2023 and goes away in 2024 for residential projects, while commercial projects are reduced to 10 percent ongoing. The ITC applies to both residential and commercial systems and there is no cap to the size of the system the ITC can be applied to. Making plans now to invest in a solar PV system for your home can be a great way to continue to reap the rewards of working from home without it having a significant negative impact on your monthly utility bill.

Read More
Solar+Storage

Building a Clean and Green Smart Grid

Article | June 8, 2022

The evolution of smart grid and the transformation in the power sector? The concept of a Smart Grid has taken centre stage with an evolution of Solar, Wind energy sources, advanced technologies such as AI/ML , Energy storage , introduction of Electric vehicles, sensors that transmit real time data all of which make a smarter, more efficient electrical power grid possible. In contrast the Existing grid is facing some complex challenges that include integrating renewable energy, Cyber security, high losses, unable to support large Electric vehicle penetration and empowering consumers to become power producers. It is time for India to make this paradigm shift that touches right from Generation, Transmission, Distribution and consumption. So, the first step would be the installation of smart meters and Advanced Metering infrastructure which is a key component of the smart grid. The roll out of smart meters has already started and integrating other pieces into this smart meter value chain and other building blocks. This new metering system enables two-way flow of information between consumers and utilities and improve the overall grid operations, cost efficient and support large scale penetration of Electric vehicles. A major transformation is underway and utilities need to develop their roadmap for creating a modern Smart Grid. Solar is seeing low tariffs and what one can interpret from these solar tariff trends? In the last one year, more than 10GW worth of solar projects are auctioned and tariffs discovered are between Rs2 to Rs 2.5. These low tariffs are result of many factors that include aggressive bidding, entry of foreign players, and expectation that module prices will further fall. Also this Covid pandemic has shrink the economy, thus there are fewer tenders from the govt. with more developers chasing fewer tenders to stay in the race. These low prices put enormous pressure on EPC companies and Module suppliers to deliver at these rock bottom prices. These bids take into account the low prices of Chinese imports, now with BCD (Basic custom duty) in force from April 2022 it will be challenging for power producers to continue executing projects at such low prices. Another concern is the delay in signing PPA’s (Power purchase agreements) by Discoms. PPA’s once signed are valid for the entire term of PPA which is usually 25 years. But given the tender tariffs falling every few months, Discoms prefer to wait and delay the signing or renegotiate the existing PPA, dampening the investor confidence and threatening the viability of the Projects. In these circumstances the role of regulatory oversight increases to protect the interests of all the stakeholders. However, in the coming years technology improvements with addition of energy storage and better forecasting techniques, Solar would become the major source and also the cheapest source. So sunny days ahead of solar. The decentralized solar and innovative business models and financing? In the current system of centralized power system, a large power plant produces power, transmits, and distributes it among industries and homes. This process is inefficient as some of the electricity is lost in transmission and distribution. A De-centralized solar is more efficient to generate and consume power locally. It also helps create small businesses and technicians to build and maintain these solar plants. Also as Solar and battery systems increase and become more economical Peer to Peer energy trading is possible where consumers become prosumers (both producers and consumers) and sell their excess power to their peers. This next generation Energy Management and Peer-to-Peer Energy trading facilitates buy and sell orders just like share trading stock exchange. The Energy trading platform maps the buyers and sellers as per their bids and settles the trades. By introducing Block chain technology for energy trading further reduces the transaction costs. The possible business models would be Community based Solar plants where rooftops and open spaces could be used to generate power and trade. All of this result in less losses and brings the much needed dynamism in the distribution of energy. Role of AI and data analytics in the energy sector? The Power sector generates large amounts of data from various nodes on the grid and unfortunately most of this data go unanalysed due to lack of infrastructure and domain expertise. But now with the maturity in data management systems and two-way communication enabling real time data from various components of the grid giving latest and integrated snapshot of the entire power system, it is possible through the application of AI to provide services such as Fault detection, Predictive maintenance, Power quality Monitoring, and Renewable energy forecasting. Many discoms are plagued by theft of power and Cyberattacks. The recent Cyber attack on Maharashtra power grid is an example that caused massive power outage in Mumbai last October plunging the city into darkness. By using the power of AI/ML, algorithms can be trained to detect any attack based on certain attributes. As soon as the attack is detected an alert is sent to the security engineers to bring the system to safety mode. In addition, Smart meters with pre-paid mechanism are expected to be deployed for remote meter reading and accurate billing thus preventing revenue loss. AI/ML has the potential to cut energy waste, lower energy costs, and bring more operation efficiencies for the utilities. Strategies in EV charging and integration with smart grid? EV’s are promising solution to cut greenhouse gas emissions, reduce the cost of transportation and improving the health of citizens. The emerging business models are Public charging stations, third party owned operated charging station, and owner operated charging station. However, the ground reality is far fewer EV’s are running on road due to higher cost, Range anxiety, and long charging times. So, there is need to work closely with all the stakeholders right from utilities, Regulatory bodies, Car manufacturers, charging station operators to expedite the process of EV related infrastructure and incentivize customers to adapt to EV’s rather than convention vehicles. In your question you asked about integration with smart grid and this is a term that captures the shift from basic to smart charging. A smart grid is key to smart EV charging as large number of EV charging at same time can degrade grid performance causing voltage and frequency fluctuations and cause peak power demand or sudden drop in demand. With smart grid in place it is possible to do load balancing, adjust charging patterns and avoid peaking of power. Also one more challenge is there are 3 competing standards and India should define its own standards and enable charging of any vehicle at any charging station. This interoperability is possible by developing standards for front–end and back-end communication and signalling process between Electric vehicles and charging stations and the grid that supplies the power. Smart grid is essential for large deployments of EV’s. Investment opportunities and job creation in this transformation to clean power? Covid has changed the entire investment paradigm and made all of us Environmentally conscious. This is wake up call to prioritize a more sustainable approach to investment in companies that are high on Environmental, Social and Governance score. The recent momentum in ESG investment with more than 3,300 ESG funds is an indication that businesses that demonstrate business ethics, transparency, Sustainability benefit companies and investors and attract best talent too. The spectacular rise of share price of Tesla is a clear message from investors on clean energy and EV transportation. As the world is getting serious India has a catching up to do from the findings of Refinitiv on ESG. As Asset managers, Pension funds, Oil and Gas companies evaluate their exposure to fossil based energy sources and switch towards clean energy this is going to create new Green jobs. These new Green jobs range from retrofitting homes with solar panels, providing home based charging stations, energy efficient appliances, Solid waste mgmt, e-waste mgmt. Similarly, Smart cities, Green buildings, greening of enterprises can be achieved by training the work force on these new concepts and driving investments towards job creation and sustainability. In summary, power sector is in for a major transformation and utilities, industries need to tap the right talent to deal with this disruption and reap immense benefits.

Read More
Solar+Storage

ClearVue Solar Glass Greenhouse Officially Opened

Article | April 20, 2021

A high-tech greenhouse comprised mainly of solar glass generating electricity to help run it was officially opened yesterday in Western Australia. ClearVue Technologies Limited’s solar glass involves a nanoparticle interlayer and spectral-selective coating on the rear external surface that enables 70% of natural light to pass through while redirecting infrared and UV light converted to infrared to the edge where it is harvested by solar cells. ClearVue says each 1m2 of its window product is currently rated to generate 30 watts-peak of electric power, but also mentions a new-generation product with the proven ability to generate 40 watts peak per m2 to be available sometime this year.

Read More

Spotlight

Weatherford

Weatherford is one of the largest multinational oilfield service companies providing innovative solutions, technology and services to the oil and gas industry. The Company operates in over 100 countries and has a network of approximately 1,000 locations, including manufacturing, service, research and development, and training facilities.

Related News

Energy

Greenwood Sustainable Infrastructure (GSI)-Led Joint Initiative with Ocean Man First Nation to Build One of the Largest Solar Projects in Canada

PR Newswire | January 25, 2024

Greenwood Sustainable Infrastructure LLC (GSI), one of the renewable energy subsidiaries of Libra Group, announced that Iyuhána Solar (Iyuhána), a GSI-led partnership with Saturn Power Inc. and Ocean Man First Nation, has been awarded a Power Purchase Agreement (PPA) to construct and operate a 100-megawatt (MWac) utility-scale solar facility in Saskatchewan, Canada. Developed in partnership with Ocean Man First Nation, the project will be one of Canada's top 10 solar facilities by size. Under an exclusive PPA, the largest with a utility in Canada since 2015, Iyuhána plans to invest approximately $200 million (CDN) to construct the solar facility, which it will operate, supplying generated power to the principal municipal utility company, SaskPower, for 25 years. Located in the Rural Municipality of Estevan in southeast Saskatchewan, this emissions-free solar facility will produce enough power for the equivalent of approximately 25,000 homes. "We are proud to bring the transformative power of solar energy to Saskatchewan by working with partners such as Ocean Man First Nation," said Mazen Turk, CEO of GSI. "This unique collaboration shows the power of renewable energy to harness resources and empower communities responsibly. This work is core to our ethos as a Libra company, and we look forward to continuing to help support a clean energy future across Canada and beyond." As a founding partner, Ocean Man First Nation will have an ownership stake in Iyuhána Solar. Band members will also receive specialized training to maintain the solar facilities and employment opportunities with the project. Additionally, partnering with two of Saskatchewan's leading post-secondary academic institutions, Iyuhána will provide scholarships, internships, and direct research projects in clean energy to benefit the community. "Our partnership with GSI and SaskPower will bring great opportunities for Ocean Man First Nation, including employment and revenue that will provide stability and sustainability for our Band," said Chief Connie Big Eagle, Ocean Man First Nation. "We are proud that this project, which is able to generate clean power, will be known as Iyuhána Solar, which, in Nakotah translates to 'everyone' or 'all of us.' This is derived from our Nakotah belief that everyone and everything is related and therefore we must care for each other." While investment in renewable energy grows across Canada, Saskatchewan's clean power supply mix has predominantly consisted of hydro and wind. This is the first of many planned solar projects in the province; by 2035, SaskPower plans to support approximately 3000 MW of new renewable energy capacity in the region. "This new solar facility will play an important role in our path to net-zero by 2050 or sooner," said Rupen Pandya, SaskPower President and CEO. "We are proud of our ongoing collaboration with Indigenous peoples and the critical role they are playing in the successful expansion of renewable energy in our province." GSI is one of four renewable energy subsidiaries of Libra Group, a privately owned, global business group that encompasses 20 businesses in six sectors, including renewable energy, maritime, aerospace and more. The Group's renewable energy portfolio encompasses approximately 3.5 gigawatts (GW) of projects owned, developed, or pending development in 10 countries, including solar, wind, battery storage, and waste-to energy projects. This is the second partnership with an indigenous community led by a Libra Group subsidiary. "Libra Group is proud of this novel partnership, which has come together through shared values and a commitment to driving economic growth and positive outcomes for communities," said Libra Group's CEO Manos Kouligkas. "Sustainability is core to our global business, and we look forward to continuing to leverage synergies across our six sectors in 60 countries with agility and impact." Last year, GSI acquired Saturn Power Inc.'s solar and battery development portfolios, including its team of seasoned developers and an approximate 1.4-gigawatt (GW) pipeline of early- to late-stage solar and energy storage projects. Today, GSI has a footprint across Canada and in 12 U.S. states. About Greenwood Sustainable Infrastructure Greenwood Sustainable Infrastructure (GSI) is one of the clean energy subsidiaries of Libra Group. GSI is a renewable energy company focused on the development, construction, and operation of distributed generation and utility-scale solar energy and battery storage projects in North America. As of January 2024, the company developed approximately 388 MW DC across 71 renewable energy projects, many of which are still owned or operated by GSI and have an additional project pipeline of 1.6 GW. GSI's seasoned team has a proven track record of investing in power assets and partnering with multiple top-tiered investors. For more information on Greenwood Sustainable Infrastructure (GSI), visit: http://www.greenwoodinfra.com/ About Ocean Man First Nation The Ocean Man First Nation is a Nakota, Cree, and Saulteaux Band Government in southeast Saskatchewan. OMFN is led by Chief Connie Big Eagle & Council and features a population of 565 members. Ocean Man First Nation created a renewable energy company in 2019 called Second Wind Power. The name Second Wind Power reflects Ocean Man First Nation's history of relocating, re-establishing and starting over as a new community since 1989. About Libra Group Libra Group is a privately owned, global business group encompassing 20 businesses predominately focused on aerospace, renewable energy, maritime, real estate, hospitality, and diversified investments. With assets and operations in nearly 60 countries, the Group applies the strength of its global network and capabilities to deliver cross-sector insights and growth at scale.

Read More

Energy

ACE Green completes successful handover of emissions-free lead recycling facility to ACME

PR Newswire | January 16, 2024

ACE Green Recycling (ACE) has successfully delivered the first of three phases of its proprietary zero-emissions modular lead battery recycling technology to ACME Metal Enterprise's facility in Keelung City, Taiwan. As part of the agreement, ACE will provide equipment and proprietary chemicals to enable ACME to produce "GreenLead™" in a safe, sustainable and economical way. This marks the second successful deployment of ACE's pioneering lead battery recycling technology. ACME is Taiwan's leading lead recycler, with over 40 years of successful operation. Through its partnership with ACE, ACME will become one of the largest producers of emissions-free lead, with a capacity to recycle 20,000 metric tonnes per year of lead batteries to produce about 12,000 metric tonnes of environmentally friendly "GreenLead™", generating nearly USD 24 million in annual revenue for the Taiwanese company. Of the deal, Linus P. Lu, Managing Director of ACME, said: "We are excited and pleased to have successfully completed the installation of ACE's lead battery recycling technology at our facility. This marks an important milestone for ACME as we build our capacity to provide sustainable lead recycling capabilities – not just for our company but for the entire lead battery ecosystem as well." Lead batteries are a key element in the automotive and telecoms industries, while also playing a crucial role in the energy transition for renewable power storage. Traditionally, lead batteries are recycled via a smelting process which involves operating temperatures of over 1,000°C, producing significant greenhouse gas (GHG) emissions, plus toxic solid waste that must go to landfill. ACE's room temperature recycling technology replaces the smelting furnace, is electrically powered, has zero Scope 1 GHG emissions and reduces solid waste by over 85%. The process will greatly enhance ACME's profitability and minimize their operator and environmental risks. Phase I of the agreement for 2,400 metric tons per annum was successfully handed over to ACME in December 2023, with Phases II and III to increase annual capacity to around 20,000 metric tonnes, which will proceed later this year. During the 10-year contractual duration of 10 years, these facilities will enable the recycling of over 14 million scrap batteries. This will prevent the emission of nearly 120 million kilograms of CO2e, stop 18 million kilograms of solid waste from going into landfill and enable recycling of more than 14 million kilograms of plastics, while providing high-paying, sustainable green jobs for the community. This collaboration with ACME demonstrates ACE's deep commitment to the battery market. Sales of GreenLead™ from ACME's facility will reach the key markets of Taiwan and Japan, including leading battery OEMs across Asia. "It is our goal as a battery recycling technology platform to provide all players in the ecosystem a way to meet not just their commercial goals but their environmental ones as well," said ACE Green CEO Nishchay Chadha. "We develop our carbon-free recycling technologies to meet the industry's global aspirations to be responsible stakeholders in the mission of meeting net-zero targets." Lead batteries remain an essential component of global electrification. By successfully deploying its green solutions, ACE will continue to support and champion the lead industry and provide not just a profitable solution, but a sustainable one for all secondary lead producers. ACE is a market leader in both lead and lithium-ion battery recycling technologies and is partnering with companies worldwide to help them set up environmentally friendly battery recycling facilities. The company has a team of over 70 people and is dual headquartered in the US and Singapore. Forward-Looking Statements This document contains certain forward-looking statements regarding ACE's technological capabilities and future business aspirations. All statements are based upon current ACE expectations and involve a number of business and technical risks and uncertainties that could cause actual results to differ materially from anticipated results described, implied or projected in any forward-looking statement, including, without limitation, regulatory approvals, unexpected changes in technologies, uncertainties inherent in technological development, scaling and roll out, intellectual property protection, and sources and availability of third-party financing.

Read More

Energy

Eletopia Revolutionizes Energy Storage Solutions in the US

PR Newswire | January 15, 2024

Eletopia, a leading provider of smart energy storage solutions, is transforming the energy storage market with innovative technology. Integrating advanced battery management, energy conversion, and intelligent energy operation, Eletopia offers comprehensive solutions, redefining home energy management. In an era prioritizing energy reliability and sustainability, Eletopia's whole-house backup power solution will impact the power plans for U.S. homeowners. Providing security during outages, the H2 series Hybrid Inverter efficiently convert solar energy during low consumption periods. Through the B2 series High Voltage Battery and the mobile storage unit S36 series Portable Power Station, they stored electricity ensures uninterrupted power for essential household appliances, electronics, and systems. Eletopia's Smart Backup Unit (SBU) seamlessly switches between solar, grid, and generator power sources, ensuring continuous functionality. Eletopia's solution guarantees reliable backup power, keeping households operational. At the core of Eletopia's offering is the All-in-one Smart Energy Management System (EMS), empowering homeowners with complete control of their energy usage. Offering features like power station monitoring, AI diagnostics, AI Saving, and more, this system provides efficient energy management for every home. Eletopia prioritizes safety, efficiency, and profitability. Their solutions integrate power generation, energy storage, consumption, and operational services, amplifying the value of energy storage. Leveraging advanced battery management, energy conversion, and smart storage technology, Eletopia enables homeowners to optimize resources for a greener, sustainable future. Eletopia credits its success to a diverse team of American and global experts in the energy sector. From battery technologists to marketing specialists, their collective expertise ensures cutting-edge solutions tailored for American homeowners. Beyond innovation, Eletopia focuses on customer-centricity. Collaborating closely with clients, they address specific requirements, ensuring project success and seamless operation. This commitment, coupled with exceptional service, has established Eletopia as a trusted industry partner. About Eletopia: Eletopia specializes in comprehensive, smart energy storage solutions merging power generation, energy storage, consumption, and operational services. Our suite of cutting-edge technologies—advanced battery management, energy conversion, equipment integration, smart storage management, and operational expertise—aims to increase the value of energy storage. Committed to becoming a global leader, we serve partners and end-users seeking professional, innovative brands in smart energy management.

Read More

Energy

Greenwood Sustainable Infrastructure (GSI)-Led Joint Initiative with Ocean Man First Nation to Build One of the Largest Solar Projects in Canada

PR Newswire | January 25, 2024

Greenwood Sustainable Infrastructure LLC (GSI), one of the renewable energy subsidiaries of Libra Group, announced that Iyuhána Solar (Iyuhána), a GSI-led partnership with Saturn Power Inc. and Ocean Man First Nation, has been awarded a Power Purchase Agreement (PPA) to construct and operate a 100-megawatt (MWac) utility-scale solar facility in Saskatchewan, Canada. Developed in partnership with Ocean Man First Nation, the project will be one of Canada's top 10 solar facilities by size. Under an exclusive PPA, the largest with a utility in Canada since 2015, Iyuhána plans to invest approximately $200 million (CDN) to construct the solar facility, which it will operate, supplying generated power to the principal municipal utility company, SaskPower, for 25 years. Located in the Rural Municipality of Estevan in southeast Saskatchewan, this emissions-free solar facility will produce enough power for the equivalent of approximately 25,000 homes. "We are proud to bring the transformative power of solar energy to Saskatchewan by working with partners such as Ocean Man First Nation," said Mazen Turk, CEO of GSI. "This unique collaboration shows the power of renewable energy to harness resources and empower communities responsibly. This work is core to our ethos as a Libra company, and we look forward to continuing to help support a clean energy future across Canada and beyond." As a founding partner, Ocean Man First Nation will have an ownership stake in Iyuhána Solar. Band members will also receive specialized training to maintain the solar facilities and employment opportunities with the project. Additionally, partnering with two of Saskatchewan's leading post-secondary academic institutions, Iyuhána will provide scholarships, internships, and direct research projects in clean energy to benefit the community. "Our partnership with GSI and SaskPower will bring great opportunities for Ocean Man First Nation, including employment and revenue that will provide stability and sustainability for our Band," said Chief Connie Big Eagle, Ocean Man First Nation. "We are proud that this project, which is able to generate clean power, will be known as Iyuhána Solar, which, in Nakotah translates to 'everyone' or 'all of us.' This is derived from our Nakotah belief that everyone and everything is related and therefore we must care for each other." While investment in renewable energy grows across Canada, Saskatchewan's clean power supply mix has predominantly consisted of hydro and wind. This is the first of many planned solar projects in the province; by 2035, SaskPower plans to support approximately 3000 MW of new renewable energy capacity in the region. "This new solar facility will play an important role in our path to net-zero by 2050 or sooner," said Rupen Pandya, SaskPower President and CEO. "We are proud of our ongoing collaboration with Indigenous peoples and the critical role they are playing in the successful expansion of renewable energy in our province." GSI is one of four renewable energy subsidiaries of Libra Group, a privately owned, global business group that encompasses 20 businesses in six sectors, including renewable energy, maritime, aerospace and more. The Group's renewable energy portfolio encompasses approximately 3.5 gigawatts (GW) of projects owned, developed, or pending development in 10 countries, including solar, wind, battery storage, and waste-to energy projects. This is the second partnership with an indigenous community led by a Libra Group subsidiary. "Libra Group is proud of this novel partnership, which has come together through shared values and a commitment to driving economic growth and positive outcomes for communities," said Libra Group's CEO Manos Kouligkas. "Sustainability is core to our global business, and we look forward to continuing to leverage synergies across our six sectors in 60 countries with agility and impact." Last year, GSI acquired Saturn Power Inc.'s solar and battery development portfolios, including its team of seasoned developers and an approximate 1.4-gigawatt (GW) pipeline of early- to late-stage solar and energy storage projects. Today, GSI has a footprint across Canada and in 12 U.S. states. About Greenwood Sustainable Infrastructure Greenwood Sustainable Infrastructure (GSI) is one of the clean energy subsidiaries of Libra Group. GSI is a renewable energy company focused on the development, construction, and operation of distributed generation and utility-scale solar energy and battery storage projects in North America. As of January 2024, the company developed approximately 388 MW DC across 71 renewable energy projects, many of which are still owned or operated by GSI and have an additional project pipeline of 1.6 GW. GSI's seasoned team has a proven track record of investing in power assets and partnering with multiple top-tiered investors. For more information on Greenwood Sustainable Infrastructure (GSI), visit: http://www.greenwoodinfra.com/ About Ocean Man First Nation The Ocean Man First Nation is a Nakota, Cree, and Saulteaux Band Government in southeast Saskatchewan. OMFN is led by Chief Connie Big Eagle & Council and features a population of 565 members. Ocean Man First Nation created a renewable energy company in 2019 called Second Wind Power. The name Second Wind Power reflects Ocean Man First Nation's history of relocating, re-establishing and starting over as a new community since 1989. About Libra Group Libra Group is a privately owned, global business group encompassing 20 businesses predominately focused on aerospace, renewable energy, maritime, real estate, hospitality, and diversified investments. With assets and operations in nearly 60 countries, the Group applies the strength of its global network and capabilities to deliver cross-sector insights and growth at scale.

Read More

Energy

ACE Green completes successful handover of emissions-free lead recycling facility to ACME

PR Newswire | January 16, 2024

ACE Green Recycling (ACE) has successfully delivered the first of three phases of its proprietary zero-emissions modular lead battery recycling technology to ACME Metal Enterprise's facility in Keelung City, Taiwan. As part of the agreement, ACE will provide equipment and proprietary chemicals to enable ACME to produce "GreenLead™" in a safe, sustainable and economical way. This marks the second successful deployment of ACE's pioneering lead battery recycling technology. ACME is Taiwan's leading lead recycler, with over 40 years of successful operation. Through its partnership with ACE, ACME will become one of the largest producers of emissions-free lead, with a capacity to recycle 20,000 metric tonnes per year of lead batteries to produce about 12,000 metric tonnes of environmentally friendly "GreenLead™", generating nearly USD 24 million in annual revenue for the Taiwanese company. Of the deal, Linus P. Lu, Managing Director of ACME, said: "We are excited and pleased to have successfully completed the installation of ACE's lead battery recycling technology at our facility. This marks an important milestone for ACME as we build our capacity to provide sustainable lead recycling capabilities – not just for our company but for the entire lead battery ecosystem as well." Lead batteries are a key element in the automotive and telecoms industries, while also playing a crucial role in the energy transition for renewable power storage. Traditionally, lead batteries are recycled via a smelting process which involves operating temperatures of over 1,000°C, producing significant greenhouse gas (GHG) emissions, plus toxic solid waste that must go to landfill. ACE's room temperature recycling technology replaces the smelting furnace, is electrically powered, has zero Scope 1 GHG emissions and reduces solid waste by over 85%. The process will greatly enhance ACME's profitability and minimize their operator and environmental risks. Phase I of the agreement for 2,400 metric tons per annum was successfully handed over to ACME in December 2023, with Phases II and III to increase annual capacity to around 20,000 metric tonnes, which will proceed later this year. During the 10-year contractual duration of 10 years, these facilities will enable the recycling of over 14 million scrap batteries. This will prevent the emission of nearly 120 million kilograms of CO2e, stop 18 million kilograms of solid waste from going into landfill and enable recycling of more than 14 million kilograms of plastics, while providing high-paying, sustainable green jobs for the community. This collaboration with ACME demonstrates ACE's deep commitment to the battery market. Sales of GreenLead™ from ACME's facility will reach the key markets of Taiwan and Japan, including leading battery OEMs across Asia. "It is our goal as a battery recycling technology platform to provide all players in the ecosystem a way to meet not just their commercial goals but their environmental ones as well," said ACE Green CEO Nishchay Chadha. "We develop our carbon-free recycling technologies to meet the industry's global aspirations to be responsible stakeholders in the mission of meeting net-zero targets." Lead batteries remain an essential component of global electrification. By successfully deploying its green solutions, ACE will continue to support and champion the lead industry and provide not just a profitable solution, but a sustainable one for all secondary lead producers. ACE is a market leader in both lead and lithium-ion battery recycling technologies and is partnering with companies worldwide to help them set up environmentally friendly battery recycling facilities. The company has a team of over 70 people and is dual headquartered in the US and Singapore. Forward-Looking Statements This document contains certain forward-looking statements regarding ACE's technological capabilities and future business aspirations. All statements are based upon current ACE expectations and involve a number of business and technical risks and uncertainties that could cause actual results to differ materially from anticipated results described, implied or projected in any forward-looking statement, including, without limitation, regulatory approvals, unexpected changes in technologies, uncertainties inherent in technological development, scaling and roll out, intellectual property protection, and sources and availability of third-party financing.

Read More

Energy

Eletopia Revolutionizes Energy Storage Solutions in the US

PR Newswire | January 15, 2024

Eletopia, a leading provider of smart energy storage solutions, is transforming the energy storage market with innovative technology. Integrating advanced battery management, energy conversion, and intelligent energy operation, Eletopia offers comprehensive solutions, redefining home energy management. In an era prioritizing energy reliability and sustainability, Eletopia's whole-house backup power solution will impact the power plans for U.S. homeowners. Providing security during outages, the H2 series Hybrid Inverter efficiently convert solar energy during low consumption periods. Through the B2 series High Voltage Battery and the mobile storage unit S36 series Portable Power Station, they stored electricity ensures uninterrupted power for essential household appliances, electronics, and systems. Eletopia's Smart Backup Unit (SBU) seamlessly switches between solar, grid, and generator power sources, ensuring continuous functionality. Eletopia's solution guarantees reliable backup power, keeping households operational. At the core of Eletopia's offering is the All-in-one Smart Energy Management System (EMS), empowering homeowners with complete control of their energy usage. Offering features like power station monitoring, AI diagnostics, AI Saving, and more, this system provides efficient energy management for every home. Eletopia prioritizes safety, efficiency, and profitability. Their solutions integrate power generation, energy storage, consumption, and operational services, amplifying the value of energy storage. Leveraging advanced battery management, energy conversion, and smart storage technology, Eletopia enables homeowners to optimize resources for a greener, sustainable future. Eletopia credits its success to a diverse team of American and global experts in the energy sector. From battery technologists to marketing specialists, their collective expertise ensures cutting-edge solutions tailored for American homeowners. Beyond innovation, Eletopia focuses on customer-centricity. Collaborating closely with clients, they address specific requirements, ensuring project success and seamless operation. This commitment, coupled with exceptional service, has established Eletopia as a trusted industry partner. About Eletopia: Eletopia specializes in comprehensive, smart energy storage solutions merging power generation, energy storage, consumption, and operational services. Our suite of cutting-edge technologies—advanced battery management, energy conversion, equipment integration, smart storage management, and operational expertise—aims to increase the value of energy storage. Committed to becoming a global leader, we serve partners and end-users seeking professional, innovative brands in smart energy management.

Read More

Events