Energy, Industry Updates
Article | July 29, 2022
Renewable energy is the energy generated from natural resources on Earth that are neither limited or exhaustible, such as wind and sun. Thus, renewable energy is an alternative to conventional energy based on fossil fuels and is generally less harmful to the environment.
Some Sources of Renewable Energy
Solar:
Solar energy is created by capturing sunlight's radiant energy and turning it into heat, electricity, or hot water. Photovoltaic (PV) systems utilize solar cells to convert direct sunlight into energy.
The significant advantage of solar energy is that it is functionally infinite. There is an infinite supply of solar energy with the technology to harvest it, making fossil fuels obsolete. Using solar energy instead of fossil fuels can also help improve public health and environmental conditions. In addition, solar energy has the potential to eliminate energy expenses in the long run, as well as decrease your energy bills in the short term. Many government, state, and local governments also provide rebates or tax credits to encourage investment in solar energy. To know more about Solar Energy, click here.
Although solar energy can save you money in the long term, it has a high upfront cost out of reach for most households. In addition, for personal houses, homeowners should also have enough sunlight and space to install their solar panels, restricting who can realistically adopt this technology on an individual level.
Wind:
Wind farms use turbines to generate wind energy and convert it to electricity. There are many types of systems used to convert wind energy, and each one is unique. Commercial-grade wind-powered generating systems can power a wide range of organizations, while single-wind turbines are utilized to complement current energy organizations. Utility-scale wind farms, which are purchased on a contract or wholesale basis, are another option. Wind energy is technically a kind of solar energy. Wind is caused by temperature variations in the atmosphere and the rotation of the Earth, and the geography of the planet.
Wind energy is a clean energy source, which means it does not damage the environment in the same way other types of energy do. Wind energy does not emit carbon dioxide or any other hazardous pollutants that can degrade the environment or damage human health, such as smog, acid rain, or other heat-trapping gases. Investment in wind energy technology can also lead to new employment opportunities and job training, as farm turbines should be serviced and maintained to remain operational.
Wind farms are often constructed in rural or isolated locations, far from busy towns where electricity is most required. Wind energy must be transmitted through transition lines, which raises the cost. Even though wind turbines produce relatively little pollution, some cities are opposed to them because they dominate skylines and create noise. In addition, wind turbines can pose a danger to nearby animals, such as birds, who are occasionally killed when they collide with the turbine's arms while flying.
Hydroelectric:
When it comes to hydroelectric power, most people think of dams. Pumped-storage hydropower is the process through which water flows through the turbines of a dam to generate energy. Run-of-river hydropower utilizes a canal to funnel water through rather than a dam to power it.
Hydroelectric power is very flexible since it can be generated utilizing both large-scale projects such as the Hoover Dam and small-scale projects such as underwater turbines and lower dams on rivers and streams. In addition, because hydroelectric power does not emit pollutants, it is a far more ecologically beneficial energy source for our environment.
The majority of hydroelectric power plants use more energy than they generate. To pump water, the storage systems may need to utilize fossil fuels. Although hydroelectric power does not contaminate the air, it disrupts rivers. It harms the animals that dwell in them by changing water levels, currents, and migratory routes for many fish and other freshwater ecosystems.
Geothermal:
Geothermal heat is heat trapped under the Earth's crust due to the Earth's creation 4.5 billion years ago and radioactive decay. Large quantities of this heat can sometimes escape spontaneously, but only all at once, resulting in well-known phenomena like volcanic explosions and geysers. This heat can be collected and utilized to generate geothermal energy by utilizing steam generated by heated water pumping under the surface, which rises to the surface and can power a turbine.
Geothermal energy is not as common as other forms of renewable energy, but it has considerable energy supply potential. In addition, it has a little environmental impact because it can be constructed underground. As geothermal energy is replenished naturally, it is not in danger of depletion.
When it comes to the drawbacks of geothermal energy, the cost is a significant issue. Not only is the infrastructure expensive to construct, but it is also vulnerable to earthquakes in some parts of the world.
Is renewable energy capable of powering the future?
Renewable energy technologies already account for approximately 26% of total global power, and the International Energy Agency (IEA) predicts that this will rise to 30% by 2024. According to the IEA, by 2024, the world's renewable energy capacity will have increased by 1,200 GW, which is equivalent to the capacity of the whole United States.
Expert analysis indicates that a completely sustainable energy system can be achieved worldwide over the next 30 years; the difficult part is persuading countries to change their ways.
What is the significance of renewable energy in the future?
There are many reasons why renewable energy is critical for the future, particularly given the negative impact that fossil fuels have on our world. This includes, among other things, air and water pollution, habitat and wildlife loss, and greenhouse gas emissions that contribute to global warming. Here are a few examples of why renewable energy is so important:
Lowers air pollution: By lowering air pollution, renewable energy may help improve people's health worldwide. Air pollution is a significant environmental problem, particularly in metropolitan areas and developing countries, and the World Health Organization estimates that 7 million people die prematurely due to inhaling contaminated air each year.
Lowers the danger of floods and droughts: Using renewable energy can also lower the risk of floods and droughts throughout the world. For example, many gallons of water are required to operate power plants that burn fossil fuels, leading to droughts in many low-rainfall nations. In contrast, climate change induced by the combustion of fossil fuels produces greater rainfall in other areas, resulting in catastrophic floods.
Promotes local economies: The development of renewable energy technologies also contributes to creating new employment and financing for local economies. As a result, more employment in renewable energy is being generated every day, and they are only expected to grow more secure as technology advances.
Lower long-term costs: Clean energy sources are becoming more appealing investment possibilities than fossil fuels. With the growing popularity of renewable energy sources like solar and wind power, investment is low risk, even with hefty initial installation costs. They can effectively generate electricity "for free" for decades after installation.
A future powered by renewable energy will result in a more sustainable environment and help many local economies in ways that fossil fuels cannot.
What is the best future renewable energy source?
Solar energy and wind power, together with hydropower, are considered the greatest renewable energy sources for powering our future planet. They are the cleanest renewable resources and are ideal for household, industrial, and national grid uses.
They can offer limitless quantities of clean energy to the world, but they can also boost local economies. Wind power technology has already resulted in a significant rise in employment and helps to put money back into local communities, with additional jobs being generated with each installation.
Solar energy can benefit everyone who has sufficient space for PV panels, and it is much less intrusive than wind turbines. And, although initial installation prices can be high, they will start to fall as solar becomes more common.
Is it possible for the world to survive on 100% renewable energy in the future?
The world may survive on 100% renewable energy in the future, but this will not be without challenges. To read more about the challenges in renewable energy click here. Each nation will have to go through its transition phase, which will be relatively simple for some and more difficult for others. Others may be hesitant even to begin the transition if their economy is highly dependent on fossil fuels.
The world's future can be unpredictable, and it's impossible to tell if it's possible to live completely on renewable energy. Still, we can help make the planet a better place by switching our homes' electricity to renewable energy.
In the future, how efficient will renewable energy be?
Renewable energy efficiency is determined by how much energy can be generated in a given period and how much it costs to generate this energy. Despite the fact that all renewable energy technologies have high initial costs, the costs of generating energy are considerably lower than the costs of obtaining fossil fuels.
With the continuous advancement of renewable energy technology, this efficiency will only increase, bringing us closer to a bright future for renewable energy.
What are the future benefits and drawbacks of renewable energy?
Benefits:
Renewable energy technologies have an infinite supply — as long as we have the sun, wind, water, and natural heat, we have renewable energy technologies.
Reduced global warming impacts, such as floods, severe storms, droughts, and other extreme weather conditions.
Fewer air contaminants, which lead to improved respiratory health.
Reduced greenhouse gas emissions result in a more stable climate.
More employment for local areas.
More robust supply, which assists in the elimination of power outages.
Enhanced accessibility.
Lower energy costs, particularly with renewable energy prices falling.
Drawbacks:
Expensive initial installation costs.
Intermittent - depending on the renewable energy source, they will not provide electricity 24 hours a day, seven days a week. Solar energy, for example, cannot be produced at night, and wind is not always powerful enough to spin a turbine.
More advancements in storage solutions are required - renewable energy storage can be costly, but this is expected to improve as technology advances.
Geographical constraints - some areas will be more suited to renewable energy sources than others.
What factors will influence the future of renewable energy?
The environmental advantages and the cost of transition are the two most important factors determining the future of renewable energy.
The benefits of renewable energy sources often exceed the drawbacks, yet the high initial costs frequently discourage people from investing. Luckily, as environmental problems become more generally recognized, renewable energy prices, including installation costs, are falling, providing greater incentive to switch to renewable energy sources.
So, what does the future of renewable energy hold?
Renewable energy is expected to grow in popularity over the next decade, attempting to minimize the impacts of climate change. This may take some time, but we will have to switch to renewable energy to fight against climate change and protect our environment.
FAQ
Why is renewable energy the future?
Alternative energy sources emit much less Carbon dioxide than natural gas, coal, and other fossil fuels. Switching to renewable energy sources for electricity production will benefit the environment by delaying and reversing climate change.
Is renewable energy a good investment for business?
There are many benefits to investing in renewable energy sources for businesses, including increased marketing possibilities, fewer emissions, cheaper energy costs, and many more. Businesses must lead the way in becoming more sustainable by expanding their usage of renewable energy.
What is the best renewable energy source for the future?
Solar energy and wind power, together with hydropower, are considered the greatest renewable energy sources for powering our future planet. They are the cleanest renewable resources and are ideal for household, industrial, and national grid uses. They can offer limitless quantities of clean energy to the world, but they can also boost local economies. Wind power technology has already resulted in a significant rise in employment and helps to put money back into local communities, with additional jobs being generated with each installation.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "Why is renewable energy the future?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Alternative energy sources emit much less Carbon dioxide than natural gas, coal, and other fossil fuels. Switching to renewable energy sources for electricity production will benefit the environment by delaying and reversing climate change."
}
},{
"@type": "Question",
"name": "Is renewable energy a good investment for business?",
"acceptedAnswer": {
"@type": "Answer",
"text": "There are many benefits to investing in renewable energy sources for businesses, including increased marketing possibilities, fewer emissions, cheaper energy costs, and many more. Businesses must lead the way in becoming more sustainable by expanding their usage of renewable energy."
}
},{
"@type": "Question",
"name": "What is the best renewable energy source for the future?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Solar energy and wind power, together with hydropower, are considered the greatest renewable energy sources for powering our future planet. They are the cleanest renewable resources and are ideal for household, industrial, and national grid uses. They can offer limitless quantities of clean energy to the world, but they can also boost local economies. Wind power technology has already resulted in a significant rise in employment and helps to put money back into local communities, with additional jobs being generated with each installation."
}
}]
}
Read More
Solar+Storage, Strategy and Best Practices
Article | September 17, 2022
Machine learning and artificial intelligence (AI) are two of the most commonly used commercial phrases these days. As a result, companies across sectors are searching for methods to include them in order to optimize and automate their key operations. The energy sector is no exception!
Indeed, throughout the years, renewable energy industries (wind, solar, hydro, nuclear) have substantially gained from the potential of machine learning. They were able to reduce their expenses, make better projections, and raise the rate of return on their portfolio. And this tendency is just going to gain momentum. If your company is in the energy industry or utilizes a lot of power, machine learning and AI can help you improve your business performance. But how precisely? Let's get started.
Ways in Which AI and Machine Learning are Changing Energy Sector
There are a few methods that machine learning and AI can be applied to positively improve the energy industry. Here are a few popular applications currently under development.
Predictive Maintenance
AI helps match energy output with demand and ensure power grid stability and resilience.In 2003, a low-hanging high-voltage electricity line hit an overgrown tree in Ohio, causing a widespread blackout. There was no power system alarm and no sign of the incident. The electric company didn't notice until three additional power lines failed. This carelessness ultimately brought down the whole grid. The 50 million-person blackout lasted two days. Eleven individuals died, and $6 billion was lost.
Predictive maintenance can be implemented using machine learning and IoT
Sensors gather operational time series data from electricity lines, equipment, and stations (data accompanied by a timestamp).
Machine learning algorithms can then forecast when a component will fail (or n-steps). It can also anticipate machinery's remaining usable life or future breakdown. These algorithms detect machine failure, eliminate blackouts or downtimes, improve maintenance procedures, and reduce maintenance expenses.
Grid Management
Grid management is a promising AI application in energy. Complex networks distribute electricity to users (also known as the power grid). Generation and demand must always match in the electrical system. Other issues, like blackouts and system breakdowns, can occur.
Despite being ancient, pumped hydroelectric storage is the most common way to store energy. It operates by moving water upwards and letting it fall into turbines. Renewable energy makes predicting the grid's power generation challenging. After all, it is affected by a variety of things, like sunlight and wind.
Demand Response
Large demand shifts can be expensive for nations that depend on renewable energy. As nations migrate to green energy, it's harder to adapt to demand fluctuations. Germany plans to use 80% renewable energy by 2050.
Countries such as Germany will encounter two major challenges Demand fluctuations: On some days or times of the year, power consumption soars (on Christmas, for example) Weather volatility: Without wind or clear skies, it might be hard to meet electrical demand. In both circumstances, more stations or fossil fuel-powered facilities must meet demand
Solving demand response issues
Many nations are partnering with businesses to examine weather forecasts, power demand, etc. Germany's EWeLiNE project forecasts wind and solar energy at a specific moment. This enables the government to use non-renewable energy to meet additional power demand.
They utilize enormous historical data sets to train machine learning algorithms, as well as data from wind turbines or solar panels, to properly balance supply and demand.
Closing Lines
AI increases the potential of humans. Several renewable energy producers are investing in artificial intelligence to boost their businesses.There are numerous uses of artificial intelligence in renewable energy. The fundamental purpose of AI integrated systems is to reduce forecasting issues and incorporate renewable energy into the central energy grid as effectively as possible. AI can also assist renewable energy providers in developing successful plans and policies based on present energy consumption and demand.
Read More
Energy
Article | July 15, 2022
The evolution of smart grid and the transformation in the power sector?
The concept of a Smart Grid has taken centre stage with an evolution of Solar, Wind energy sources, advanced technologies such as AI/ML , Energy storage , introduction of Electric vehicles, sensors that transmit real time data all of which make a smarter, more efficient electrical power grid possible.
In contrast the Existing grid is facing some complex challenges that include integrating renewable energy, Cyber security, high losses, unable to support large Electric vehicle penetration and empowering consumers to become power producers.
It is time for India to make this paradigm shift that touches right from Generation, Transmission, Distribution and consumption. So, the first step would be the installation of smart meters and Advanced Metering infrastructure which is a key component of the smart grid. The roll out of smart meters has already started and integrating other pieces into this smart meter value chain and other building blocks. This new metering system enables two-way flow of information between consumers and utilities and improve the overall grid operations, cost efficient and support large scale penetration of Electric vehicles. A major transformation is underway and utilities need to develop their roadmap for creating a modern Smart Grid.
Solar is seeing low tariffs and what one can interpret from these solar tariff trends?
In the last one year, more than 10GW worth of solar projects are auctioned and tariffs discovered are between Rs2 to Rs 2.5. These low tariffs are result of many factors that include aggressive bidding, entry of foreign players, and expectation that module prices will further fall. Also this Covid pandemic has shrink the economy, thus there are fewer tenders from the govt. with more developers chasing fewer tenders to stay in the race.
These low prices put enormous pressure on EPC companies and Module suppliers to deliver at these rock bottom prices. These bids take into account the low prices of Chinese imports, now with BCD (Basic custom duty) in force from April 2022 it will be challenging for power producers to continue executing projects at such low prices.
Another concern is the delay in signing PPA’s (Power purchase agreements) by Discoms. PPA’s once signed are valid for the entire term of PPA which is usually 25 years. But given the tender tariffs falling every few months, Discoms prefer to wait and delay the signing or renegotiate the existing PPA, dampening the investor confidence and threatening the viability of the Projects. In these circumstances the role of regulatory oversight increases to protect the interests of all the stakeholders. However, in the coming years technology improvements with addition of energy storage and better forecasting techniques, Solar would become the major source and also the cheapest source. So sunny days ahead of solar.
The decentralized solar and innovative business models and financing?
In the current system of centralized power system, a large power plant produces power, transmits, and distributes it among industries and homes. This process is inefficient as some of the electricity is lost in transmission and distribution.
A De-centralized solar is more efficient to generate and consume power locally. It also helps create small businesses and technicians to build and maintain these solar plants. Also as Solar and battery systems increase and become more economical Peer to Peer energy trading is possible where consumers become prosumers (both producers and consumers) and sell their excess power to their peers.
This next generation Energy Management and Peer-to-Peer Energy trading facilitates buy and sell orders just like share trading stock exchange. The Energy trading platform maps the buyers and sellers as per their bids and settles the trades. By introducing Block chain technology for energy trading further reduces the transaction costs. The possible business models would be Community based Solar plants where rooftops and open spaces could be used to generate power and trade. All of this result in less losses and brings the much needed dynamism in the distribution of energy.
Role of AI and data analytics in the energy sector?
The Power sector generates large amounts of data from various nodes on the grid and unfortunately most of this data go unanalysed due to lack of infrastructure and domain expertise. But now with the maturity in data management systems and two-way communication enabling real time data from various components of the grid giving latest and integrated snapshot of the entire power system, it is possible through the application of AI to provide services such as Fault detection, Predictive maintenance, Power quality Monitoring, and Renewable energy forecasting.
Many discoms are plagued by theft of power and Cyberattacks. The recent Cyber attack on Maharashtra power grid is an example that caused massive power outage in Mumbai last October plunging the city into darkness. By using the power of AI/ML, algorithms can be trained to detect any attack based on certain attributes. As soon as the attack is detected an alert is sent to the security engineers to bring the system to safety mode. In addition, Smart meters with pre-paid mechanism are expected to be deployed for remote meter reading and accurate billing thus preventing revenue loss.
AI/ML has the potential to cut energy waste, lower energy costs, and bring more operation efficiencies for the utilities.
Strategies in EV charging and integration with smart grid?
EV’s are promising solution to cut greenhouse gas emissions, reduce the cost of transportation and improving the health of citizens. The emerging business models are Public charging stations, third party owned operated charging station, and owner operated charging station.
However, the ground reality is far fewer EV’s are running on road due to higher cost, Range anxiety, and long charging times. So, there is need to work closely with all the stakeholders right from utilities, Regulatory bodies, Car manufacturers, charging station operators to expedite the process of EV related infrastructure and incentivize customers to adapt to EV’s rather than convention vehicles.
In your question you asked about integration with smart grid and this is a term that captures the shift from basic to smart charging. A smart grid is key to smart EV charging as large number of EV charging at same time can degrade grid performance causing voltage and frequency fluctuations and cause peak power demand or sudden drop in demand. With smart grid in place it is possible to do load balancing, adjust charging patterns and avoid peaking of power.
Also one more challenge is there are 3 competing standards and India should define its own standards and enable charging of any vehicle at any charging station. This interoperability is possible by developing standards for front–end and back-end communication and signalling process between Electric vehicles and charging stations and the grid that supplies the power. Smart grid is essential for large deployments of EV’s.
Investment opportunities and job creation in this transformation to clean power?
Covid has changed the entire investment paradigm and made all of us Environmentally conscious. This is wake up call to prioritize a more sustainable approach to investment in companies that are high on Environmental, Social and Governance score.
The recent momentum in ESG investment with more than 3,300 ESG funds is an indication that businesses that demonstrate business ethics, transparency, Sustainability benefit companies and investors and attract best talent too. The spectacular rise of share price of Tesla is a clear message from investors on clean energy and EV transportation. As the world is getting serious India has a catching up to do from the findings of Refinitiv on ESG.
As Asset managers, Pension funds, Oil and Gas companies evaluate their exposure to fossil based energy sources and switch towards clean energy this is going to create new Green jobs. These new Green jobs range from retrofitting homes with solar panels, providing home based charging stations, energy efficient appliances, Solid waste mgmt, e-waste mgmt. Similarly, Smart cities, Green buildings, greening of enterprises can be achieved by training the work force on these new concepts and driving investments towards job creation and sustainability.
In summary, power sector is in for a major transformation and utilities, industries need to tap the right talent to deal with this disruption and reap immense benefits.
Read More
Energy
Article | April 20, 2021
Energy is an important feature in the economic and political development of a country. In developed nations like the USA, energy expansion has now reached a point where renewable energy sources also play a large part in the production of electricity.
To meet the energy demands of the country, most production of renewable energy comes from fossil fuels and other non-renewable energy sources.
Around 25% of the world’s energy is generated with renewable energy resources- mainly solar, wind, hydropower, and in some cases, geothermal. It is one of the fastest-growing electricity sources.
Renewable energy is collected from resources that are abundantly available in the environment, like the sun or wind. There has been a growing interest in renewable energy production as fossil fuels are depleting. In most parts of the world, renewable energy has become a primary source of energy production.
Renewable energy is preferred as they produce fewer greenhouse gases than non-RE sources. There are several other advantages to renewable sources like lower carbon emissions, reduced air pollution, and other socioeconomic benefits.
However, unlike non-RE sources, there are challenges in renewable energy like economic, political and regulatory barriers, structural, social, and technical challenges which require advancement in technology, and a heavy investment with a proper understanding of obstacles it faces. Some obstacles are due to technology associated with renewable energy, whereas others are because of policies, marketplace, regulations, and infrastructure.
Impact of Covid-19
The Covid-19 pandemic has brought the world to a grinding halt. It has severely impacted individuals and businesses alike, with many of the latter being closed down permanently. Similarly, the pandemic has also impacted the expansion of clean energy systems by forcefully curbing any investments.
The technology and adoption of renewables have been making uneven but sure progress. The global pandemic has slowed down this development. According to International Energy Agency, the global share of electricity supply from renewables had reached 28% in 2020 from 26% in 2019, but the growth is expected to slow down further. The total energy supply is set to reduce by 13% from 2019. This substantial decline can be attributed to supply chain disruptions, lockdown, and emerging financial problems. Transport biofuel production and renewable heat consumption are projected to decline due to lower industrial activity.
Governments have an opportunity to promote and accelerate the use of clean energy by incentivizing building, technology, and infrastructure across the country. This would be crucial to rebuilding the economy, create jobs, and build efficiency.
Capital Costs and Investment
The most obvious challenge of widespread adoption of renewables is cost, predominantly infrastructure costs like building and installing solar and wind power plants. Although it is quite cheap to operate and maintain solar and wind power plants, installation becomes more and more expensive.
Over the last few years, even though the prices of installation of solar panels has fallen significantly, it remains higher than non-renewables. On average, a 2-kilowatt solar panel system costs $4,159 after tax credits, whereas the capital cost of a gas-fired power plant would cost lesser than that.
In the last two years, investment in renewables has increased, but that is only because the investments in fossil fuels have been rapidly falling. Clean energy investments still fall short of what is necessary to convert into a more sustainable future. To ensure continuous investment in sustainable energy, policymakers have to focus on short investment turnaround, focus on rapid environmental gains favoring cleaner energy generation.
Power on demand
One of the most significant challenges of renewables is the ability to provide power on demand. In the case of solar power, you only get energy during the day and only when it is sunny. As for wind energy, power is generated only when it is windy. There is an intermittent generation of power in renewables which wouldn’t be a problem if there were appropriate energy storage solutions. The biggest test in providing power on demand is storage. Even if homes, businesses, or states install wind energy systems or solar panels, storing the generated energy is still an unsolved issue.
Opponents of renewable energy highlight the reliability factor on solar and wind to augment support for coal, gas, and nuclear plants, which provide baseload power. This argument is used by lobbyists to drive out investment into renewables, thus becoming a barrier to widespread adoption of wind and solar energy.
Location challenges
Renewable energy plants have grids that require a large area of land. It can be unappealing to customers to switch to renewable energy sources as it is conditional depending on the size of the land. Not all states and regions are apt to build solar panels or have wind turbines as they are dependent on the geographical location. For example, building solar panels in California makes more sense than building them in New York as the former has an abundant supply of both sun and land.
Renewables operates on what is known as a decentralized model. In a decentralized power plant, small generating stations are spread across a larger area that works collectively to deliver power. In the case of coal, nuclear power, or natural gas, they are highly centralized and depend on fewer high output power plants.
Siting
Decentralized systems prove to be a problem for siting and transmission of energy created by solar or wind. Siting is needed to move blades or solar panels to large pieces of land. To do so requires to draw up contracts, negotiate, acquire permits, or build community relations; all of this can delay or kill a renewable project even before it begins.
Businesses can incur additional charges due to demand and delivery which seems like a significant challenge for them. Utility services apply these charges to recover costs of purchasing energy and maintaining power lines and energy lost in the transmission system. Moving power sources closer to your business will help you avoid such preventable expenses.
Transmission
The next challenge to overcome in renewables is the transmission of generated electricity. Transmission means the transfer of electricity from where it is generated to where it is consumed. Most transmitters that exist in this day and age are built for coal and other fossil fuels and not renewables. To make things easier for transmission of clean energy, there needs to be a significant infrastructure and technological development, which cost a lot of money.
Making the economics work with financing and siting can prove costly for developers and customers alike.
Policies and Regulations
Unfortunately, the fossil fuel industry is backed by multi-billionaires who wield a considerable amount of political influence. This severely affects the chances of expansion for the renewable industry. Industry experts estimate that the USA spends upwards of $60 billion on subsidies for fossil fuels every year. The taxpayers have helped fund the industry’s research and development, drilling, mining, and generation of electricity. Renewables like wind and solar enjoy much lesser subsidies and political backing. The fossil fuel industry has used its enormous power to spread misinformation about climate change.
To increase public interest and investment in renewables, there need to be clear and concise legal procedures and regulatory policies. Having proper regulations in place creates a stable environment for investment and overcome hurdles and can anticipate the revenue streams. Large-scale renewable energy projects require a large amount of capital which is hindered by the failure of proper policies that fail to attract private players.
Frequently Asked Questions
What is a major challenge with using more renewable energy?
Renewable energy is competing with fossil fuels and nuclear technology. Other major challenges include underdeveloped infrastructure and lack of economies of scale.
What are the benefits of using renewable energy?
Some benefits of using renewable energy are lower energy costs, reduction of emissions, massive positive impact on environment, and marketing opportunities for businesses.
Is renewable energy cheaper than fossil fuels?
Fossil fuels are subsidized which makes it cheaper at the beginning. However, renewables get cheaper to maintain over the years hence making it cheaper than fossil fuels.
What is the cheapest source of renewable energy?
Solar PV and on site wind are the cheapest sources of renewable energy sources.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "What is a major challenge with using more renewable energy?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Renewable energy is competing with fossil fuels and nuclear technology. Other major challenges include underdeveloped infrastructure and lack of economies of scale."
}
},{
"@type": "Question",
"name": "What are the benefits of using renewable energy?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Some benefits of using renewable energy are lower energy costs, reduction of emissions, massive positive impact on environment, and marketing opportunities for businesses."
}
},{
"@type": "Question",
"name": "Is renewable energy cheaper than fossil fuels?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Fossil fuels are subsidized which makes it cheaper at the beginning. However, renewables get cheaper to maintain over the years hence making it cheaper than fossil fuels."
}
}]
}
Read More