Harvesting energy from roads

Energy harvesting uses sunlight or the mechanical vibrations produced by vehicles and pedestrians to generate electrical energy. This electricity can then be used to power road infrastructure such as lights and signals. It can be stored in batteries for use when needed or fed into the electric power grid, and because it makes use of the existing road network. No new land space needs to be allocated.

Spotlight

Eclipse Energy

Eclipse Energy are renewable energy specialists, including solar panels, boiler installation and repair. We're advocates of energy efficiency, being installers of Nest Thermostats, Vaillant Boilers, hyrbid and biomass boilers and solar battery storage.

OTHER ARTICLES
Solar+Storage

Renewable Fuels Will Help Pave the Way to a 100% Renewable Energy

Article | June 14, 2022

The need to reduce carbon emissions is real. In 2018, the International Panel on Climate Change (IPCC) reported that global emissions would need to reach net-zero (or carbon-neutral) by 2050 to prevent severe climate change impacts. Electricity is a major contributor—electricity generation was responsible for approximately 33% of total CO2 emissions in the U.S. in 2018. Electric utilities stand to play a critical role in reducing carbon emissions. Many are up to the task of decarbonizing their operations and supplying carbon-free or carbon-neutral energy to their customers.

Read More
Solar+Storage

5 Challenges in Renewable Energy in 2021

Article | June 8, 2022

Energy is an important feature in the economic and political development of a country. In developed nations like the USA, energy expansion has now reached a point where renewable energy sources also play a large part in the production of electricity. To meet the energy demands of the country, most production of renewable energy comes from fossil fuels and other non-renewable energy sources. Around 25% of the world’s energy is generated with renewable energy resources- mainly solar, wind, hydropower, and in some cases, geothermal. It is one of the fastest-growing electricity sources. Renewable energy is collected from resources that are abundantly available in the environment, like the sun or wind. There has been a growing interest in renewable energy production as fossil fuels are depleting. In most parts of the world, renewable energy has become a primary source of energy production. Renewable energy is preferred as they produce fewer greenhouse gases than non-RE sources. There are several other advantages to renewable sources like lower carbon emissions, reduced air pollution, and other socioeconomic benefits. However, unlike non-RE sources, there are challenges in renewable energy like economic, political and regulatory barriers, structural, social, and technical challenges which require advancement in technology, and a heavy investment with a proper understanding of obstacles it faces. Some obstacles are due to technology associated with renewable energy, whereas others are because of policies, marketplace, regulations, and infrastructure. Impact of Covid-19 The Covid-19 pandemic has brought the world to a grinding halt. It has severely impacted individuals and businesses alike, with many of the latter being closed down permanently. Similarly, the pandemic has also impacted the expansion of clean energy systems by forcefully curbing any investments. The technology and adoption of renewables have been making uneven but sure progress. The global pandemic has slowed down this development. According to International Energy Agency, the global share of electricity supply from renewables had reached 28% in 2020 from 26% in 2019, but the growth is expected to slow down further. The total energy supply is set to reduce by 13% from 2019. This substantial decline can be attributed to supply chain disruptions, lockdown, and emerging financial problems. Transport biofuel production and renewable heat consumption are projected to decline due to lower industrial activity. Governments have an opportunity to promote and accelerate the use of clean energy by incentivizing building, technology, and infrastructure across the country. This would be crucial to rebuilding the economy, create jobs, and build efficiency. Capital Costs and Investment The most obvious challenge of widespread adoption of renewables is cost, predominantly infrastructure costs like building and installing solar and wind power plants. Although it is quite cheap to operate and maintain solar and wind power plants, installation becomes more and more expensive. Over the last few years, even though the prices of installation of solar panels has fallen significantly, it remains higher than non-renewables. On average, a 2-kilowatt solar panel system costs $4,159 after tax credits, whereas the capital cost of a gas-fired power plant would cost lesser than that. In the last two years, investment in renewables has increased, but that is only because the investments in fossil fuels have been rapidly falling. Clean energy investments still fall short of what is necessary to convert into a more sustainable future. To ensure continuous investment in sustainable energy, policymakers have to focus on short investment turnaround, focus on rapid environmental gains favoring cleaner energy generation. Power on demand One of the most significant challenges of renewables is the ability to provide power on demand. In the case of solar power, you only get energy during the day and only when it is sunny. As for wind energy, power is generated only when it is windy. There is an intermittent generation of power in renewables which wouldn’t be a problem if there were appropriate energy storage solutions. The biggest test in providing power on demand is storage. Even if homes, businesses, or states install wind energy systems or solar panels, storing the generated energy is still an unsolved issue. Opponents of renewable energy highlight the reliability factor on solar and wind to augment support for coal, gas, and nuclear plants, which provide baseload power. This argument is used by lobbyists to drive out investment into renewables, thus becoming a barrier to widespread adoption of wind and solar energy. Location challenges Renewable energy plants have grids that require a large area of land. It can be unappealing to customers to switch to renewable energy sources as it is conditional depending on the size of the land. Not all states and regions are apt to build solar panels or have wind turbines as they are dependent on the geographical location. For example, building solar panels in California makes more sense than building them in New York as the former has an abundant supply of both sun and land. Renewables operates on what is known as a decentralized model. In a decentralized power plant, small generating stations are spread across a larger area that works collectively to deliver power. In the case of coal, nuclear power, or natural gas, they are highly centralized and depend on fewer high output power plants. Siting Decentralized systems prove to be a problem for siting and transmission of energy created by solar or wind. Siting is needed to move blades or solar panels to large pieces of land. To do so requires to draw up contracts, negotiate, acquire permits, or build community relations; all of this can delay or kill a renewable project even before it begins. Businesses can incur additional charges due to demand and delivery which seems like a significant challenge for them. Utility services apply these charges to recover costs of purchasing energy and maintaining power lines and energy lost in the transmission system. Moving power sources closer to your business will help you avoid such preventable expenses. Transmission The next challenge to overcome in renewables is the transmission of generated electricity. Transmission means the transfer of electricity from where it is generated to where it is consumed. Most transmitters that exist in this day and age are built for coal and other fossil fuels and not renewables. To make things easier for transmission of clean energy, there needs to be a significant infrastructure and technological development, which cost a lot of money. Making the economics work with financing and siting can prove costly for developers and customers alike. Policies and Regulations Unfortunately, the fossil fuel industry is backed by multi-billionaires who wield a considerable amount of political influence. This severely affects the chances of expansion for the renewable industry. Industry experts estimate that the USA spends upwards of $60 billion on subsidies for fossil fuels every year. The taxpayers have helped fund the industry’s research and development, drilling, mining, and generation of electricity. Renewables like wind and solar enjoy much lesser subsidies and political backing. The fossil fuel industry has used its enormous power to spread misinformation about climate change. To increase public interest and investment in renewables, there need to be clear and concise legal procedures and regulatory policies. Having proper regulations in place creates a stable environment for investment and overcome hurdles and can anticipate the revenue streams. Large-scale renewable energy projects require a large amount of capital which is hindered by the failure of proper policies that fail to attract private players. Frequently Asked Questions What is a major challenge with using more renewable energy? Renewable energy is competing with fossil fuels and nuclear technology. Other major challenges include underdeveloped infrastructure and lack of economies of scale. What are the benefits of using renewable energy? Some benefits of using renewable energy are lower energy costs, reduction of emissions, massive positive impact on environment, and marketing opportunities for businesses. Is renewable energy cheaper than fossil fuels? Fossil fuels are subsidized which makes it cheaper at the beginning. However, renewables get cheaper to maintain over the years hence making it cheaper than fossil fuels. What is the cheapest source of renewable energy? Solar PV and on site wind are the cheapest sources of renewable energy sources. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is a major challenge with using more renewable energy?", "acceptedAnswer": { "@type": "Answer", "text": "Renewable energy is competing with fossil fuels and nuclear technology. Other major challenges include underdeveloped infrastructure and lack of economies of scale." } },{ "@type": "Question", "name": "What are the benefits of using renewable energy?", "acceptedAnswer": { "@type": "Answer", "text": "Some benefits of using renewable energy are lower energy costs, reduction of emissions, massive positive impact on environment, and marketing opportunities for businesses." } },{ "@type": "Question", "name": "Is renewable energy cheaper than fossil fuels?", "acceptedAnswer": { "@type": "Answer", "text": "Fossil fuels are subsidized which makes it cheaper at the beginning. However, renewables get cheaper to maintain over the years hence making it cheaper than fossil fuels." } }] }

Read More
Solar+Storage, Strategy and Best Practices

Working From Home? Solar Might Be Perfect for You

Article | September 17, 2022

The pandemic emptied out most of America’s offices as workers across the country set up home workstations. Although this looked to be a temporary situation for many, it has become clear that many workers are choosing to continue to work from home, and many businesses are embracing this concept as well. If you’re one of those individuals, you may want to consider adding solar to your home. A shift in power usage According to the National Bureau of Economic Research, “Americans spent $6 billion more on at-home power consumption from April to July 2020 than during normal times, nearly offsetting a decline in business and industrial demand.” The increase in residential consumption was fueled by increased home heating and cooling demands, workers participating in virtual meetings, running computers, printers, lamps, and other electronic devices all day long. This has resulted in a shift in energy costs from corporations to employees, with many workers seeing significant increases in their home utility bills. Capitalizing on higher demand to maximize your system size Solar can be a great way to offset the costs of your home's energy demands. Because your consumption is currently higher than it would be if you were working at your company's office, you have the ability to install a system that will more than cover your electricity needs if and when you do return to a corporate office setting. Although your increased usage means you'll need to add a more extensive solar photovoltaic system to your home to do this, it also provides you with an opportunity to maximize your system's size to meet your needs. Incentives and savings The federal solar tax credit, also known as the investment tax credit (ITC), allows you to deduct 26 percent of the cost of installing a solar energy system from your federal taxes. However, that number falls to 22 percent in 2023 and goes away in 2024 for residential projects, while commercial projects are reduced to 10 percent ongoing. The ITC applies to both residential and commercial systems and there is no cap to the size of the system the ITC can be applied to. Making plans now to invest in a solar PV system for your home can be a great way to continue to reap the rewards of working from home without it having a significant negative impact on your monthly utility bill.

Read More
Solar+Storage

Building a Clean and Green Smart Grid

Article | April 16, 2021

The evolution of smart grid and the transformation in the power sector? The concept of a Smart Grid has taken centre stage with an evolution of Solar, Wind energy sources, advanced technologies such as AI/ML , Energy storage , introduction of Electric vehicles, sensors that transmit real time data all of which make a smarter, more efficient electrical power grid possible. In contrast the Existing grid is facing some complex challenges that include integrating renewable energy, Cyber security, high losses, unable to support large Electric vehicle penetration and empowering consumers to become power producers. It is time for India to make this paradigm shift that touches right from Generation, Transmission, Distribution and consumption. So, the first step would be the installation of smart meters and Advanced Metering infrastructure which is a key component of the smart grid. The roll out of smart meters has already started and integrating other pieces into this smart meter value chain and other building blocks. This new metering system enables two-way flow of information between consumers and utilities and improve the overall grid operations, cost efficient and support large scale penetration of Electric vehicles. A major transformation is underway and utilities need to develop their roadmap for creating a modern Smart Grid. Solar is seeing low tariffs and what one can interpret from these solar tariff trends? In the last one year, more than 10GW worth of solar projects are auctioned and tariffs discovered are between Rs2 to Rs 2.5. These low tariffs are result of many factors that include aggressive bidding, entry of foreign players, and expectation that module prices will further fall. Also this Covid pandemic has shrink the economy, thus there are fewer tenders from the govt. with more developers chasing fewer tenders to stay in the race. These low prices put enormous pressure on EPC companies and Module suppliers to deliver at these rock bottom prices. These bids take into account the low prices of Chinese imports, now with BCD (Basic custom duty) in force from April 2022 it will be challenging for power producers to continue executing projects at such low prices. Another concern is the delay in signing PPA’s (Power purchase agreements) by Discoms. PPA’s once signed are valid for the entire term of PPA which is usually 25 years. But given the tender tariffs falling every few months, Discoms prefer to wait and delay the signing or renegotiate the existing PPA, dampening the investor confidence and threatening the viability of the Projects. In these circumstances the role of regulatory oversight increases to protect the interests of all the stakeholders. However, in the coming years technology improvements with addition of energy storage and better forecasting techniques, Solar would become the major source and also the cheapest source. So sunny days ahead of solar. The decentralized solar and innovative business models and financing? In the current system of centralized power system, a large power plant produces power, transmits, and distributes it among industries and homes. This process is inefficient as some of the electricity is lost in transmission and distribution. A De-centralized solar is more efficient to generate and consume power locally. It also helps create small businesses and technicians to build and maintain these solar plants. Also as Solar and battery systems increase and become more economical Peer to Peer energy trading is possible where consumers become prosumers (both producers and consumers) and sell their excess power to their peers. This next generation Energy Management and Peer-to-Peer Energy trading facilitates buy and sell orders just like share trading stock exchange. The Energy trading platform maps the buyers and sellers as per their bids and settles the trades. By introducing Block chain technology for energy trading further reduces the transaction costs. The possible business models would be Community based Solar plants where rooftops and open spaces could be used to generate power and trade. All of this result in less losses and brings the much needed dynamism in the distribution of energy. Role of AI and data analytics in the energy sector? The Power sector generates large amounts of data from various nodes on the grid and unfortunately most of this data go unanalysed due to lack of infrastructure and domain expertise. But now with the maturity in data management systems and two-way communication enabling real time data from various components of the grid giving latest and integrated snapshot of the entire power system, it is possible through the application of AI to provide services such as Fault detection, Predictive maintenance, Power quality Monitoring, and Renewable energy forecasting. Many discoms are plagued by theft of power and Cyberattacks. The recent Cyber attack on Maharashtra power grid is an example that caused massive power outage in Mumbai last October plunging the city into darkness. By using the power of AI/ML, algorithms can be trained to detect any attack based on certain attributes. As soon as the attack is detected an alert is sent to the security engineers to bring the system to safety mode. In addition, Smart meters with pre-paid mechanism are expected to be deployed for remote meter reading and accurate billing thus preventing revenue loss. AI/ML has the potential to cut energy waste, lower energy costs, and bring more operation efficiencies for the utilities. Strategies in EV charging and integration with smart grid? EV’s are promising solution to cut greenhouse gas emissions, reduce the cost of transportation and improving the health of citizens. The emerging business models are Public charging stations, third party owned operated charging station, and owner operated charging station. However, the ground reality is far fewer EV’s are running on road due to higher cost, Range anxiety, and long charging times. So, there is need to work closely with all the stakeholders right from utilities, Regulatory bodies, Car manufacturers, charging station operators to expedite the process of EV related infrastructure and incentivize customers to adapt to EV’s rather than convention vehicles. In your question you asked about integration with smart grid and this is a term that captures the shift from basic to smart charging. A smart grid is key to smart EV charging as large number of EV charging at same time can degrade grid performance causing voltage and frequency fluctuations and cause peak power demand or sudden drop in demand. With smart grid in place it is possible to do load balancing, adjust charging patterns and avoid peaking of power. Also one more challenge is there are 3 competing standards and India should define its own standards and enable charging of any vehicle at any charging station. This interoperability is possible by developing standards for front–end and back-end communication and signalling process between Electric vehicles and charging stations and the grid that supplies the power. Smart grid is essential for large deployments of EV’s. Investment opportunities and job creation in this transformation to clean power? Covid has changed the entire investment paradigm and made all of us Environmentally conscious. This is wake up call to prioritize a more sustainable approach to investment in companies that are high on Environmental, Social and Governance score. The recent momentum in ESG investment with more than 3,300 ESG funds is an indication that businesses that demonstrate business ethics, transparency, Sustainability benefit companies and investors and attract best talent too. The spectacular rise of share price of Tesla is a clear message from investors on clean energy and EV transportation. As the world is getting serious India has a catching up to do from the findings of Refinitiv on ESG. As Asset managers, Pension funds, Oil and Gas companies evaluate their exposure to fossil based energy sources and switch towards clean energy this is going to create new Green jobs. These new Green jobs range from retrofitting homes with solar panels, providing home based charging stations, energy efficient appliances, Solid waste mgmt, e-waste mgmt. Similarly, Smart cities, Green buildings, greening of enterprises can be achieved by training the work force on these new concepts and driving investments towards job creation and sustainability. In summary, power sector is in for a major transformation and utilities, industries need to tap the right talent to deal with this disruption and reap immense benefits.

Read More

Spotlight

Eclipse Energy

Eclipse Energy are renewable energy specialists, including solar panels, boiler installation and repair. We're advocates of energy efficiency, being installers of Nest Thermostats, Vaillant Boilers, hyrbid and biomass boilers and solar battery storage.

Related News

Energy

Greenwood Sustainable Infrastructure (GSI)-Led Joint Initiative with Ocean Man First Nation to Build One of the Largest Solar Projects in Canada

PR Newswire | January 25, 2024

Greenwood Sustainable Infrastructure LLC (GSI), one of the renewable energy subsidiaries of Libra Group, announced that Iyuhána Solar (Iyuhána), a GSI-led partnership with Saturn Power Inc. and Ocean Man First Nation, has been awarded a Power Purchase Agreement (PPA) to construct and operate a 100-megawatt (MWac) utility-scale solar facility in Saskatchewan, Canada. Developed in partnership with Ocean Man First Nation, the project will be one of Canada's top 10 solar facilities by size. Under an exclusive PPA, the largest with a utility in Canada since 2015, Iyuhána plans to invest approximately $200 million (CDN) to construct the solar facility, which it will operate, supplying generated power to the principal municipal utility company, SaskPower, for 25 years. Located in the Rural Municipality of Estevan in southeast Saskatchewan, this emissions-free solar facility will produce enough power for the equivalent of approximately 25,000 homes. "We are proud to bring the transformative power of solar energy to Saskatchewan by working with partners such as Ocean Man First Nation," said Mazen Turk, CEO of GSI. "This unique collaboration shows the power of renewable energy to harness resources and empower communities responsibly. This work is core to our ethos as a Libra company, and we look forward to continuing to help support a clean energy future across Canada and beyond." As a founding partner, Ocean Man First Nation will have an ownership stake in Iyuhána Solar. Band members will also receive specialized training to maintain the solar facilities and employment opportunities with the project. Additionally, partnering with two of Saskatchewan's leading post-secondary academic institutions, Iyuhána will provide scholarships, internships, and direct research projects in clean energy to benefit the community. "Our partnership with GSI and SaskPower will bring great opportunities for Ocean Man First Nation, including employment and revenue that will provide stability and sustainability for our Band," said Chief Connie Big Eagle, Ocean Man First Nation. "We are proud that this project, which is able to generate clean power, will be known as Iyuhána Solar, which, in Nakotah translates to 'everyone' or 'all of us.' This is derived from our Nakotah belief that everyone and everything is related and therefore we must care for each other." While investment in renewable energy grows across Canada, Saskatchewan's clean power supply mix has predominantly consisted of hydro and wind. This is the first of many planned solar projects in the province; by 2035, SaskPower plans to support approximately 3000 MW of new renewable energy capacity in the region. "This new solar facility will play an important role in our path to net-zero by 2050 or sooner," said Rupen Pandya, SaskPower President and CEO. "We are proud of our ongoing collaboration with Indigenous peoples and the critical role they are playing in the successful expansion of renewable energy in our province." GSI is one of four renewable energy subsidiaries of Libra Group, a privately owned, global business group that encompasses 20 businesses in six sectors, including renewable energy, maritime, aerospace and more. The Group's renewable energy portfolio encompasses approximately 3.5 gigawatts (GW) of projects owned, developed, or pending development in 10 countries, including solar, wind, battery storage, and waste-to energy projects. This is the second partnership with an indigenous community led by a Libra Group subsidiary. "Libra Group is proud of this novel partnership, which has come together through shared values and a commitment to driving economic growth and positive outcomes for communities," said Libra Group's CEO Manos Kouligkas. "Sustainability is core to our global business, and we look forward to continuing to leverage synergies across our six sectors in 60 countries with agility and impact." Last year, GSI acquired Saturn Power Inc.'s solar and battery development portfolios, including its team of seasoned developers and an approximate 1.4-gigawatt (GW) pipeline of early- to late-stage solar and energy storage projects. Today, GSI has a footprint across Canada and in 12 U.S. states. About Greenwood Sustainable Infrastructure Greenwood Sustainable Infrastructure (GSI) is one of the clean energy subsidiaries of Libra Group. GSI is a renewable energy company focused on the development, construction, and operation of distributed generation and utility-scale solar energy and battery storage projects in North America. As of January 2024, the company developed approximately 388 MW DC across 71 renewable energy projects, many of which are still owned or operated by GSI and have an additional project pipeline of 1.6 GW. GSI's seasoned team has a proven track record of investing in power assets and partnering with multiple top-tiered investors. For more information on Greenwood Sustainable Infrastructure (GSI), visit: http://www.greenwoodinfra.com/ About Ocean Man First Nation The Ocean Man First Nation is a Nakota, Cree, and Saulteaux Band Government in southeast Saskatchewan. OMFN is led by Chief Connie Big Eagle & Council and features a population of 565 members. Ocean Man First Nation created a renewable energy company in 2019 called Second Wind Power. The name Second Wind Power reflects Ocean Man First Nation's history of relocating, re-establishing and starting over as a new community since 1989. About Libra Group Libra Group is a privately owned, global business group encompassing 20 businesses predominately focused on aerospace, renewable energy, maritime, real estate, hospitality, and diversified investments. With assets and operations in nearly 60 countries, the Group applies the strength of its global network and capabilities to deliver cross-sector insights and growth at scale.

Read More

Energy

ACE Green completes successful handover of emissions-free lead recycling facility to ACME

PR Newswire | January 16, 2024

ACE Green Recycling (ACE) has successfully delivered the first of three phases of its proprietary zero-emissions modular lead battery recycling technology to ACME Metal Enterprise's facility in Keelung City, Taiwan. As part of the agreement, ACE will provide equipment and proprietary chemicals to enable ACME to produce "GreenLead™" in a safe, sustainable and economical way. This marks the second successful deployment of ACE's pioneering lead battery recycling technology. ACME is Taiwan's leading lead recycler, with over 40 years of successful operation. Through its partnership with ACE, ACME will become one of the largest producers of emissions-free lead, with a capacity to recycle 20,000 metric tonnes per year of lead batteries to produce about 12,000 metric tonnes of environmentally friendly "GreenLead™", generating nearly USD 24 million in annual revenue for the Taiwanese company. Of the deal, Linus P. Lu, Managing Director of ACME, said: "We are excited and pleased to have successfully completed the installation of ACE's lead battery recycling technology at our facility. This marks an important milestone for ACME as we build our capacity to provide sustainable lead recycling capabilities – not just for our company but for the entire lead battery ecosystem as well." Lead batteries are a key element in the automotive and telecoms industries, while also playing a crucial role in the energy transition for renewable power storage. Traditionally, lead batteries are recycled via a smelting process which involves operating temperatures of over 1,000°C, producing significant greenhouse gas (GHG) emissions, plus toxic solid waste that must go to landfill. ACE's room temperature recycling technology replaces the smelting furnace, is electrically powered, has zero Scope 1 GHG emissions and reduces solid waste by over 85%. The process will greatly enhance ACME's profitability and minimize their operator and environmental risks. Phase I of the agreement for 2,400 metric tons per annum was successfully handed over to ACME in December 2023, with Phases II and III to increase annual capacity to around 20,000 metric tonnes, which will proceed later this year. During the 10-year contractual duration of 10 years, these facilities will enable the recycling of over 14 million scrap batteries. This will prevent the emission of nearly 120 million kilograms of CO2e, stop 18 million kilograms of solid waste from going into landfill and enable recycling of more than 14 million kilograms of plastics, while providing high-paying, sustainable green jobs for the community. This collaboration with ACME demonstrates ACE's deep commitment to the battery market. Sales of GreenLead™ from ACME's facility will reach the key markets of Taiwan and Japan, including leading battery OEMs across Asia. "It is our goal as a battery recycling technology platform to provide all players in the ecosystem a way to meet not just their commercial goals but their environmental ones as well," said ACE Green CEO Nishchay Chadha. "We develop our carbon-free recycling technologies to meet the industry's global aspirations to be responsible stakeholders in the mission of meeting net-zero targets." Lead batteries remain an essential component of global electrification. By successfully deploying its green solutions, ACE will continue to support and champion the lead industry and provide not just a profitable solution, but a sustainable one for all secondary lead producers. ACE is a market leader in both lead and lithium-ion battery recycling technologies and is partnering with companies worldwide to help them set up environmentally friendly battery recycling facilities. The company has a team of over 70 people and is dual headquartered in the US and Singapore. Forward-Looking Statements This document contains certain forward-looking statements regarding ACE's technological capabilities and future business aspirations. All statements are based upon current ACE expectations and involve a number of business and technical risks and uncertainties that could cause actual results to differ materially from anticipated results described, implied or projected in any forward-looking statement, including, without limitation, regulatory approvals, unexpected changes in technologies, uncertainties inherent in technological development, scaling and roll out, intellectual property protection, and sources and availability of third-party financing.

Read More

Energy

Eletopia Revolutionizes Energy Storage Solutions in the US

PR Newswire | January 15, 2024

Eletopia, a leading provider of smart energy storage solutions, is transforming the energy storage market with innovative technology. Integrating advanced battery management, energy conversion, and intelligent energy operation, Eletopia offers comprehensive solutions, redefining home energy management. In an era prioritizing energy reliability and sustainability, Eletopia's whole-house backup power solution will impact the power plans for U.S. homeowners. Providing security during outages, the H2 series Hybrid Inverter efficiently convert solar energy during low consumption periods. Through the B2 series High Voltage Battery and the mobile storage unit S36 series Portable Power Station, they stored electricity ensures uninterrupted power for essential household appliances, electronics, and systems. Eletopia's Smart Backup Unit (SBU) seamlessly switches between solar, grid, and generator power sources, ensuring continuous functionality. Eletopia's solution guarantees reliable backup power, keeping households operational. At the core of Eletopia's offering is the All-in-one Smart Energy Management System (EMS), empowering homeowners with complete control of their energy usage. Offering features like power station monitoring, AI diagnostics, AI Saving, and more, this system provides efficient energy management for every home. Eletopia prioritizes safety, efficiency, and profitability. Their solutions integrate power generation, energy storage, consumption, and operational services, amplifying the value of energy storage. Leveraging advanced battery management, energy conversion, and smart storage technology, Eletopia enables homeowners to optimize resources for a greener, sustainable future. Eletopia credits its success to a diverse team of American and global experts in the energy sector. From battery technologists to marketing specialists, their collective expertise ensures cutting-edge solutions tailored for American homeowners. Beyond innovation, Eletopia focuses on customer-centricity. Collaborating closely with clients, they address specific requirements, ensuring project success and seamless operation. This commitment, coupled with exceptional service, has established Eletopia as a trusted industry partner. About Eletopia: Eletopia specializes in comprehensive, smart energy storage solutions merging power generation, energy storage, consumption, and operational services. Our suite of cutting-edge technologies—advanced battery management, energy conversion, equipment integration, smart storage management, and operational expertise—aims to increase the value of energy storage. Committed to becoming a global leader, we serve partners and end-users seeking professional, innovative brands in smart energy management.

Read More

Energy

Greenwood Sustainable Infrastructure (GSI)-Led Joint Initiative with Ocean Man First Nation to Build One of the Largest Solar Projects in Canada

PR Newswire | January 25, 2024

Greenwood Sustainable Infrastructure LLC (GSI), one of the renewable energy subsidiaries of Libra Group, announced that Iyuhána Solar (Iyuhána), a GSI-led partnership with Saturn Power Inc. and Ocean Man First Nation, has been awarded a Power Purchase Agreement (PPA) to construct and operate a 100-megawatt (MWac) utility-scale solar facility in Saskatchewan, Canada. Developed in partnership with Ocean Man First Nation, the project will be one of Canada's top 10 solar facilities by size. Under an exclusive PPA, the largest with a utility in Canada since 2015, Iyuhána plans to invest approximately $200 million (CDN) to construct the solar facility, which it will operate, supplying generated power to the principal municipal utility company, SaskPower, for 25 years. Located in the Rural Municipality of Estevan in southeast Saskatchewan, this emissions-free solar facility will produce enough power for the equivalent of approximately 25,000 homes. "We are proud to bring the transformative power of solar energy to Saskatchewan by working with partners such as Ocean Man First Nation," said Mazen Turk, CEO of GSI. "This unique collaboration shows the power of renewable energy to harness resources and empower communities responsibly. This work is core to our ethos as a Libra company, and we look forward to continuing to help support a clean energy future across Canada and beyond." As a founding partner, Ocean Man First Nation will have an ownership stake in Iyuhána Solar. Band members will also receive specialized training to maintain the solar facilities and employment opportunities with the project. Additionally, partnering with two of Saskatchewan's leading post-secondary academic institutions, Iyuhána will provide scholarships, internships, and direct research projects in clean energy to benefit the community. "Our partnership with GSI and SaskPower will bring great opportunities for Ocean Man First Nation, including employment and revenue that will provide stability and sustainability for our Band," said Chief Connie Big Eagle, Ocean Man First Nation. "We are proud that this project, which is able to generate clean power, will be known as Iyuhána Solar, which, in Nakotah translates to 'everyone' or 'all of us.' This is derived from our Nakotah belief that everyone and everything is related and therefore we must care for each other." While investment in renewable energy grows across Canada, Saskatchewan's clean power supply mix has predominantly consisted of hydro and wind. This is the first of many planned solar projects in the province; by 2035, SaskPower plans to support approximately 3000 MW of new renewable energy capacity in the region. "This new solar facility will play an important role in our path to net-zero by 2050 or sooner," said Rupen Pandya, SaskPower President and CEO. "We are proud of our ongoing collaboration with Indigenous peoples and the critical role they are playing in the successful expansion of renewable energy in our province." GSI is one of four renewable energy subsidiaries of Libra Group, a privately owned, global business group that encompasses 20 businesses in six sectors, including renewable energy, maritime, aerospace and more. The Group's renewable energy portfolio encompasses approximately 3.5 gigawatts (GW) of projects owned, developed, or pending development in 10 countries, including solar, wind, battery storage, and waste-to energy projects. This is the second partnership with an indigenous community led by a Libra Group subsidiary. "Libra Group is proud of this novel partnership, which has come together through shared values and a commitment to driving economic growth and positive outcomes for communities," said Libra Group's CEO Manos Kouligkas. "Sustainability is core to our global business, and we look forward to continuing to leverage synergies across our six sectors in 60 countries with agility and impact." Last year, GSI acquired Saturn Power Inc.'s solar and battery development portfolios, including its team of seasoned developers and an approximate 1.4-gigawatt (GW) pipeline of early- to late-stage solar and energy storage projects. Today, GSI has a footprint across Canada and in 12 U.S. states. About Greenwood Sustainable Infrastructure Greenwood Sustainable Infrastructure (GSI) is one of the clean energy subsidiaries of Libra Group. GSI is a renewable energy company focused on the development, construction, and operation of distributed generation and utility-scale solar energy and battery storage projects in North America. As of January 2024, the company developed approximately 388 MW DC across 71 renewable energy projects, many of which are still owned or operated by GSI and have an additional project pipeline of 1.6 GW. GSI's seasoned team has a proven track record of investing in power assets and partnering with multiple top-tiered investors. For more information on Greenwood Sustainable Infrastructure (GSI), visit: http://www.greenwoodinfra.com/ About Ocean Man First Nation The Ocean Man First Nation is a Nakota, Cree, and Saulteaux Band Government in southeast Saskatchewan. OMFN is led by Chief Connie Big Eagle & Council and features a population of 565 members. Ocean Man First Nation created a renewable energy company in 2019 called Second Wind Power. The name Second Wind Power reflects Ocean Man First Nation's history of relocating, re-establishing and starting over as a new community since 1989. About Libra Group Libra Group is a privately owned, global business group encompassing 20 businesses predominately focused on aerospace, renewable energy, maritime, real estate, hospitality, and diversified investments. With assets and operations in nearly 60 countries, the Group applies the strength of its global network and capabilities to deliver cross-sector insights and growth at scale.

Read More

Energy

ACE Green completes successful handover of emissions-free lead recycling facility to ACME

PR Newswire | January 16, 2024

ACE Green Recycling (ACE) has successfully delivered the first of three phases of its proprietary zero-emissions modular lead battery recycling technology to ACME Metal Enterprise's facility in Keelung City, Taiwan. As part of the agreement, ACE will provide equipment and proprietary chemicals to enable ACME to produce "GreenLead™" in a safe, sustainable and economical way. This marks the second successful deployment of ACE's pioneering lead battery recycling technology. ACME is Taiwan's leading lead recycler, with over 40 years of successful operation. Through its partnership with ACE, ACME will become one of the largest producers of emissions-free lead, with a capacity to recycle 20,000 metric tonnes per year of lead batteries to produce about 12,000 metric tonnes of environmentally friendly "GreenLead™", generating nearly USD 24 million in annual revenue for the Taiwanese company. Of the deal, Linus P. Lu, Managing Director of ACME, said: "We are excited and pleased to have successfully completed the installation of ACE's lead battery recycling technology at our facility. This marks an important milestone for ACME as we build our capacity to provide sustainable lead recycling capabilities – not just for our company but for the entire lead battery ecosystem as well." Lead batteries are a key element in the automotive and telecoms industries, while also playing a crucial role in the energy transition for renewable power storage. Traditionally, lead batteries are recycled via a smelting process which involves operating temperatures of over 1,000°C, producing significant greenhouse gas (GHG) emissions, plus toxic solid waste that must go to landfill. ACE's room temperature recycling technology replaces the smelting furnace, is electrically powered, has zero Scope 1 GHG emissions and reduces solid waste by over 85%. The process will greatly enhance ACME's profitability and minimize their operator and environmental risks. Phase I of the agreement for 2,400 metric tons per annum was successfully handed over to ACME in December 2023, with Phases II and III to increase annual capacity to around 20,000 metric tonnes, which will proceed later this year. During the 10-year contractual duration of 10 years, these facilities will enable the recycling of over 14 million scrap batteries. This will prevent the emission of nearly 120 million kilograms of CO2e, stop 18 million kilograms of solid waste from going into landfill and enable recycling of more than 14 million kilograms of plastics, while providing high-paying, sustainable green jobs for the community. This collaboration with ACME demonstrates ACE's deep commitment to the battery market. Sales of GreenLead™ from ACME's facility will reach the key markets of Taiwan and Japan, including leading battery OEMs across Asia. "It is our goal as a battery recycling technology platform to provide all players in the ecosystem a way to meet not just their commercial goals but their environmental ones as well," said ACE Green CEO Nishchay Chadha. "We develop our carbon-free recycling technologies to meet the industry's global aspirations to be responsible stakeholders in the mission of meeting net-zero targets." Lead batteries remain an essential component of global electrification. By successfully deploying its green solutions, ACE will continue to support and champion the lead industry and provide not just a profitable solution, but a sustainable one for all secondary lead producers. ACE is a market leader in both lead and lithium-ion battery recycling technologies and is partnering with companies worldwide to help them set up environmentally friendly battery recycling facilities. The company has a team of over 70 people and is dual headquartered in the US and Singapore. Forward-Looking Statements This document contains certain forward-looking statements regarding ACE's technological capabilities and future business aspirations. All statements are based upon current ACE expectations and involve a number of business and technical risks and uncertainties that could cause actual results to differ materially from anticipated results described, implied or projected in any forward-looking statement, including, without limitation, regulatory approvals, unexpected changes in technologies, uncertainties inherent in technological development, scaling and roll out, intellectual property protection, and sources and availability of third-party financing.

Read More

Energy

Eletopia Revolutionizes Energy Storage Solutions in the US

PR Newswire | January 15, 2024

Eletopia, a leading provider of smart energy storage solutions, is transforming the energy storage market with innovative technology. Integrating advanced battery management, energy conversion, and intelligent energy operation, Eletopia offers comprehensive solutions, redefining home energy management. In an era prioritizing energy reliability and sustainability, Eletopia's whole-house backup power solution will impact the power plans for U.S. homeowners. Providing security during outages, the H2 series Hybrid Inverter efficiently convert solar energy during low consumption periods. Through the B2 series High Voltage Battery and the mobile storage unit S36 series Portable Power Station, they stored electricity ensures uninterrupted power for essential household appliances, electronics, and systems. Eletopia's Smart Backup Unit (SBU) seamlessly switches between solar, grid, and generator power sources, ensuring continuous functionality. Eletopia's solution guarantees reliable backup power, keeping households operational. At the core of Eletopia's offering is the All-in-one Smart Energy Management System (EMS), empowering homeowners with complete control of their energy usage. Offering features like power station monitoring, AI diagnostics, AI Saving, and more, this system provides efficient energy management for every home. Eletopia prioritizes safety, efficiency, and profitability. Their solutions integrate power generation, energy storage, consumption, and operational services, amplifying the value of energy storage. Leveraging advanced battery management, energy conversion, and smart storage technology, Eletopia enables homeowners to optimize resources for a greener, sustainable future. Eletopia credits its success to a diverse team of American and global experts in the energy sector. From battery technologists to marketing specialists, their collective expertise ensures cutting-edge solutions tailored for American homeowners. Beyond innovation, Eletopia focuses on customer-centricity. Collaborating closely with clients, they address specific requirements, ensuring project success and seamless operation. This commitment, coupled with exceptional service, has established Eletopia as a trusted industry partner. About Eletopia: Eletopia specializes in comprehensive, smart energy storage solutions merging power generation, energy storage, consumption, and operational services. Our suite of cutting-edge technologies—advanced battery management, energy conversion, equipment integration, smart storage management, and operational expertise—aims to increase the value of energy storage. Committed to becoming a global leader, we serve partners and end-users seeking professional, innovative brands in smart energy management.

Read More

Events