Solar+Storage, Strategy and Best Practices
Article | September 17, 2022
The evolution of smart grid and the transformation in the power sector?
The concept of a Smart Grid has taken centre stage with an evolution of Solar, Wind energy sources, advanced technologies such as AI/ML , Energy storage , introduction of Electric vehicles, sensors that transmit real time data all of which make a smarter, more efficient electrical power grid possible.
In contrast the Existing grid is facing some complex challenges that include integrating renewable energy, Cyber security, high losses, unable to support large Electric vehicle penetration and empowering consumers to become power producers.
It is time for India to make this paradigm shift that touches right from Generation, Transmission, Distribution and consumption. So, the first step would be the installation of smart meters and Advanced Metering infrastructure which is a key component of the smart grid. The roll out of smart meters has already started and integrating other pieces into this smart meter value chain and other building blocks. This new metering system enables two-way flow of information between consumers and utilities and improve the overall grid operations, cost efficient and support large scale penetration of Electric vehicles. A major transformation is underway and utilities need to develop their roadmap for creating a modern Smart Grid.
Solar is seeing low tariffs and what one can interpret from these solar tariff trends?
In the last one year, more than 10GW worth of solar projects are auctioned and tariffs discovered are between Rs2 to Rs 2.5. These low tariffs are result of many factors that include aggressive bidding, entry of foreign players, and expectation that module prices will further fall. Also this Covid pandemic has shrink the economy, thus there are fewer tenders from the govt. with more developers chasing fewer tenders to stay in the race.
These low prices put enormous pressure on EPC companies and Module suppliers to deliver at these rock bottom prices. These bids take into account the low prices of Chinese imports, now with BCD (Basic custom duty) in force from April 2022 it will be challenging for power producers to continue executing projects at such low prices.
Another concern is the delay in signing PPA’s (Power purchase agreements) by Discoms. PPA’s once signed are valid for the entire term of PPA which is usually 25 years. But given the tender tariffs falling every few months, Discoms prefer to wait and delay the signing or renegotiate the existing PPA, dampening the investor confidence and threatening the viability of the Projects. In these circumstances the role of regulatory oversight increases to protect the interests of all the stakeholders. However, in the coming years technology improvements with addition of energy storage and better forecasting techniques, Solar would become the major source and also the cheapest source. So sunny days ahead of solar.
The decentralized solar and innovative business models and financing?
In the current system of centralized power system, a large power plant produces power, transmits, and distributes it among industries and homes. This process is inefficient as some of the electricity is lost in transmission and distribution.
A De-centralized solar is more efficient to generate and consume power locally. It also helps create small businesses and technicians to build and maintain these solar plants. Also as Solar and battery systems increase and become more economical Peer to Peer energy trading is possible where consumers become prosumers (both producers and consumers) and sell their excess power to their peers.
This next generation Energy Management and Peer-to-Peer Energy trading facilitates buy and sell orders just like share trading stock exchange. The Energy trading platform maps the buyers and sellers as per their bids and settles the trades. By introducing Block chain technology for energy trading further reduces the transaction costs. The possible business models would be Community based Solar plants where rooftops and open spaces could be used to generate power and trade. All of this result in less losses and brings the much needed dynamism in the distribution of energy.
Role of AI and data analytics in the energy sector?
The Power sector generates large amounts of data from various nodes on the grid and unfortunately most of this data go unanalysed due to lack of infrastructure and domain expertise. But now with the maturity in data management systems and two-way communication enabling real time data from various components of the grid giving latest and integrated snapshot of the entire power system, it is possible through the application of AI to provide services such as Fault detection, Predictive maintenance, Power quality Monitoring, and Renewable energy forecasting.
Many discoms are plagued by theft of power and Cyberattacks. The recent Cyber attack on Maharashtra power grid is an example that caused massive power outage in Mumbai last October plunging the city into darkness. By using the power of AI/ML, algorithms can be trained to detect any attack based on certain attributes. As soon as the attack is detected an alert is sent to the security engineers to bring the system to safety mode. In addition, Smart meters with pre-paid mechanism are expected to be deployed for remote meter reading and accurate billing thus preventing revenue loss.
AI/ML has the potential to cut energy waste, lower energy costs, and bring more operation efficiencies for the utilities.
Strategies in EV charging and integration with smart grid?
EV’s are promising solution to cut greenhouse gas emissions, reduce the cost of transportation and improving the health of citizens. The emerging business models are Public charging stations, third party owned operated charging station, and owner operated charging station.
However, the ground reality is far fewer EV’s are running on road due to higher cost, Range anxiety, and long charging times. So, there is need to work closely with all the stakeholders right from utilities, Regulatory bodies, Car manufacturers, charging station operators to expedite the process of EV related infrastructure and incentivize customers to adapt to EV’s rather than convention vehicles.
In your question you asked about integration with smart grid and this is a term that captures the shift from basic to smart charging. A smart grid is key to smart EV charging as large number of EV charging at same time can degrade grid performance causing voltage and frequency fluctuations and cause peak power demand or sudden drop in demand. With smart grid in place it is possible to do load balancing, adjust charging patterns and avoid peaking of power.
Also one more challenge is there are 3 competing standards and India should define its own standards and enable charging of any vehicle at any charging station. This interoperability is possible by developing standards for front–end and back-end communication and signalling process between Electric vehicles and charging stations and the grid that supplies the power. Smart grid is essential for large deployments of EV’s.
Investment opportunities and job creation in this transformation to clean power?
Covid has changed the entire investment paradigm and made all of us Environmentally conscious. This is wake up call to prioritize a more sustainable approach to investment in companies that are high on Environmental, Social and Governance score.
The recent momentum in ESG investment with more than 3,300 ESG funds is an indication that businesses that demonstrate business ethics, transparency, Sustainability benefit companies and investors and attract best talent too. The spectacular rise of share price of Tesla is a clear message from investors on clean energy and EV transportation. As the world is getting serious India has a catching up to do from the findings of Refinitiv on ESG.
As Asset managers, Pension funds, Oil and Gas companies evaluate their exposure to fossil based energy sources and switch towards clean energy this is going to create new Green jobs. These new Green jobs range from retrofitting homes with solar panels, providing home based charging stations, energy efficient appliances, Solid waste mgmt, e-waste mgmt. Similarly, Smart cities, Green buildings, greening of enterprises can be achieved by training the work force on these new concepts and driving investments towards job creation and sustainability.
In summary, power sector is in for a major transformation and utilities, industries need to tap the right talent to deal with this disruption and reap immense benefits.
Read More
Strategy and Best Practices, Industry Updates
Article | August 16, 2022
Cleaner energy resources are the dire need of the hour and this is a known fact. While scientists and experts across the planet are striving hard to reduce our reliance on fossil fuels, our energy needs have never faced a downfall- thanks to rapid industrialization and urbanization. Although renewable resources like solar, wind, and hydro-electric power are the most popular alternatives, these are seasonal energy sources and the energy production from the same will not be similar all around the year. The fluctuations in production hence cannot always meet the energy demand of the population, and this makes the renewable energy sources not completely reliable.
Solar Production v/s Demand of the same in a year
What and How H2 is produced?
Now, this is where Hydrogen- the first element of the periodic table comes to the spotlight with a solution. Being a gas, hydrogen fuel can very well cater to our energy needs and is produced from techniques including Thermochemical, Solar-Water splitting, electrolytic and biological processes. While the production of this cleaner energy source leaves a carbon footprint of about 830 million tonnes in the form of CO2 annually, the result being a zero-emission fuel is what makes H2’s future bright.
Storage of H2 – the million-dollar question:
Having almost cleared the need and methods of producing hydrogen fuel, we will be looking at an area that is usually not given much thought about and that is the storage of H2. As already mentioned, for time being let us consider hydrogen as an alternative to renewable resources which is utilized when the energy demand increases drastically. While producing the fuel in the nick of time is obviously undoable, sufficient storage of H2 anticipating the demand is the best choice. Like Natural Gas, Hydrogen is also compressed before storing to achieve lower volume and also because liquid hydrogen demands a 64% higher amount of energy for storage than its compressed gaseous counterpart.
Storage tanks v/s Geological landforms:
Compressed Hydrogen can be stored in surface storage vessels (like steel composite concrete vessels and in wind turbine towers) or in geological landforms like (salt caverns, depleted O&G reservoirs, and aquifers). Nevertheless, unlike the underground geological landforms which offer huge storage capacity owing to their sheer scale, the storage tanks which can range in size from a small bottle to a huge tank require high amounts of pressure to store an appreciable amount of H2 in it. Since these storage tanks are usually constructed on the surface, the pressure conditions in these tanks need to be artificially stimulated and thereby mount huge upfront costs when compared to their geological storage counterpart.
H2 storage prices in Geological Landforms v/s Storage Vessels (in $/kg)
The above is a table comparing the prices of Hydrogen storage in Geological landforms and Storage Vessels at different pressure conditions. It is visible from the table that it's about 218 times cheaper to store the same amount of hydrogen in Geological landforms than in storage vessels.
Is geological storage truly a better option?
Like any other storage option geological storage too has its pros and cons. From the erosion of pipelines to the tedious task of injecting the gas and maintaining it at apt pressure conditions, geological storage has its limitations. However, the important prerequisite is the availability of the suitable landform itself.
While most of the Depleted O&G Reservoirs have already met all the requirements for a suitable Underground Hydrogen Storage (UHS) system, the presence of unrecoverable remnant fluids in it makes it both a boon and a bane. This is because the presence of remnant fluids like oil and gas satisfies the cushion gas need for efficient storage of H2 in the reservoir, chances of contamination of H2 by the same is also high. This is the reason why Aquifers too aren’t favorable underground landforms when it comes to hydrogen storage.
Salt Caverns- the best UHS System?
The problem of Hydrogen contamination in Depleted Oil & Gas reservoirs and aquifers leaves us to the next big suitable subsurface landform- salt caverns. Unlike the other two landforms, the problem of contamination can be prevented in these dome-like structures formed due to the upliftment of salt deposits and it is also found that about 98% of its storage efficiency can be used to store Hydrogen here. The reason behind its relatively expensive nature when compared to its other two counterparts is due to the process of salt removing or leaching that must be done before storing to ensure that the contamination of the gas is unheard of at least here.
Suitable Conditions of UHS:
As per Stefan Iglauer, the maximum amount of H2 can be stored at a depth of 1100m beneath the Earth’s surface and the capacity gradually decreases up until 3700 m depth beyond which the wettability of the gas increases as it percolates through the rocks and hence cannot be permanently immobilized. Conclusively it is found that suitable landforms formed at 1km depth can store up to 2.0 Mt of H2. Comparing this 2 MT storage capacity of Salt Caverns with the currently available storage tanks which can store about 800 kg of H2 in it, it is visible that geological landforms have a clear upper hand at least when it comes to storage capacity.
Future of UHS:
With demands for Hydrogen fuel estimated to grow at 5.48 % annually and the need for a suitable storage system of the same at 5.8% annually, the field of Underground Hydrogen Storage systems indeed has a bright scope. Moreover, to meet the large-scale needs of Industries, there is an imminent need to level up the storage capacity of H2 and by exploring suitable geological landforms across the globe, the estimated industrial need of 1200 kT/ year in 2050 can be met.
Read More
Energy
Article | July 16, 2022
In a global economy, sustainability has become an important part of a company's business plan. Leading companies throughout the globe recognize that sustainability is critical to decreasing costs, expanding into new markets, and driving innovation and effectiveness throughout a company. Pollution prevention, or P2, is a key component of sustainability. Businesses can integrate sustainability into everyday operations in ways that encourage long-term cost savings and enhance environmental performance by effectively implementing P2 and Energy Efficiency (E2) initiatives.
The ability of a company to recognize and integrate relative information, identify the relationship of environmental performance to the business model, and concentrate existing systems and resources towards specific goals is often a direct outcome of the successful execution of pollution-prevention and energy-efficiency initiatives. Management's complete support is required for planning, developing, and executing sustainability measures within a company framework.
7 Necessary Steps for Effective Energy Management
Make the Commitment
The most important step in closing the P2 implementation gap is a commitment to continuous improvement. Accomplishing P2 and E2 successful implementation through the seven-step process usually requires top-level support, clearly communicated through an environmental and energy management strategy; the formation of a cross-functional team representing the company's administrative and process knowledge, and the appointment of a leader to make sure consistency of focus, communication, and effort. As a crucial business strategy, an engaged collective effort backed by management will ensure a company's ability to recognize and achieve P2 and E2 results.
Assess Performance and Opportunities
Understanding present and historical waste generation and energy consumption is the initial step in identifying environmental performance possibilities. A cross-functional team-based evaluation that assesses performance, systems, and equipment will harness a company's intellectual capital and enable it to identify improvement possibilities from several viewpoints. Conversations with operational personnel can result in "ah-ha" moments that solve issues and provide new solutions. Evaluating environmental performance on the basis of data analysis and setting baselines to monitor progress utilizing the company's knowledge base will open up fresh perspectives on the commercial prospects that P2 and E2 can bring.
Set Performance Goals
Setting ambitious but reasonable objectives for enhancing environmental performance will motivate behaviors that lead to positive results. This stage establishes a shared vision of progress throughout the company while capturing the commitment to reduce pollution and energy consumption. By establishing particular areas of progress and setbacks, performance targets aid in monitoring the effectiveness of the environmental and/or energy management program. Goals that are effective will define the scope and assess the possibility for progress.
Create an Action Plan
A plan of action acts as a framework for guiding and monitoring the methodical approach to better environmental performance. It helps the team concentrate by demonstrating the breadth and size of objectives, targets, responsibilities, and resources. The strategy must be accepted by all parts of the institution that it targets in order to be successful.
Implement the Action Plan
Developing a communication strategy, increasing awareness, developing capacity, motivating personnel, and monitoring progress are all key components to effectively executing the action plan. It is vital to communicate the action plan, which will need an overall statement concerning purpose, policies, and progress. While the communication strategy is intended to create knowledge regarding energy efficiency and environmental sustainability, workers, customers, and society should also be educated on how they can help enhance environmental performance. Recognizing training requirements can also aid in the effective implementation of pollution prevention and energy efficiency initiatives. Continuous feedback on accomplishments can help drive employees to continue improving.
Evaluate Progress
The action plan will be evaluated on a regular basis to keep the team updated on progress toward the stated environmental performance improvement targets. A review of the action plan will reveal any efficiency measures that need to be changed or added.
Recognize Achievements
Once the momentum for pollution avoidance and energy efficiency has been generated, it is critical to maintain it. A commitment to continuous development must be maintained throughout the seven-step strategy to be successful. A dedicated leader driving the process and a motivated team carrying it out give the greatest possibility for a long-term program that produces results.
Closing Lines
It is critical to remember these fundamental energy management steps while developing a successful energy management program. Moreover, the global landscape is rapidly changing. As a result, it is always in need of creative and efficient energy management solutions. As a result, businesses are employing specialists to handle this.
Read More
Energy
Article | April 20, 2021
Energy is an important feature in the economic and political development of a country. In developed nations like the USA, energy expansion has now reached a point where renewable energy sources also play a large part in the production of electricity.
To meet the energy demands of the country, most production of renewable energy comes from fossil fuels and other non-renewable energy sources.
Around 25% of the world’s energy is generated with renewable energy resources- mainly solar, wind, hydropower, and in some cases, geothermal. It is one of the fastest-growing electricity sources.
Renewable energy is collected from resources that are abundantly available in the environment, like the sun or wind. There has been a growing interest in renewable energy production as fossil fuels are depleting. In most parts of the world, renewable energy has become a primary source of energy production.
Renewable energy is preferred as they produce fewer greenhouse gases than non-RE sources. There are several other advantages to renewable sources like lower carbon emissions, reduced air pollution, and other socioeconomic benefits.
However, unlike non-RE sources, there are challenges in renewable energy like economic, political and regulatory barriers, structural, social, and technical challenges which require advancement in technology, and a heavy investment with a proper understanding of obstacles it faces. Some obstacles are due to technology associated with renewable energy, whereas others are because of policies, marketplace, regulations, and infrastructure.
Impact of Covid-19
The Covid-19 pandemic has brought the world to a grinding halt. It has severely impacted individuals and businesses alike, with many of the latter being closed down permanently. Similarly, the pandemic has also impacted the expansion of clean energy systems by forcefully curbing any investments.
The technology and adoption of renewables have been making uneven but sure progress. The global pandemic has slowed down this development. According to International Energy Agency, the global share of electricity supply from renewables had reached 28% in 2020 from 26% in 2019, but the growth is expected to slow down further. The total energy supply is set to reduce by 13% from 2019. This substantial decline can be attributed to supply chain disruptions, lockdown, and emerging financial problems. Transport biofuel production and renewable heat consumption are projected to decline due to lower industrial activity.
Governments have an opportunity to promote and accelerate the use of clean energy by incentivizing building, technology, and infrastructure across the country. This would be crucial to rebuilding the economy, create jobs, and build efficiency.
Capital Costs and Investment
The most obvious challenge of widespread adoption of renewables is cost, predominantly infrastructure costs like building and installing solar and wind power plants. Although it is quite cheap to operate and maintain solar and wind power plants, installation becomes more and more expensive.
Over the last few years, even though the prices of installation of solar panels has fallen significantly, it remains higher than non-renewables. On average, a 2-kilowatt solar panel system costs $4,159 after tax credits, whereas the capital cost of a gas-fired power plant would cost lesser than that.
In the last two years, investment in renewables has increased, but that is only because the investments in fossil fuels have been rapidly falling. Clean energy investments still fall short of what is necessary to convert into a more sustainable future. To ensure continuous investment in sustainable energy, policymakers have to focus on short investment turnaround, focus on rapid environmental gains favoring cleaner energy generation.
Power on demand
One of the most significant challenges of renewables is the ability to provide power on demand. In the case of solar power, you only get energy during the day and only when it is sunny. As for wind energy, power is generated only when it is windy. There is an intermittent generation of power in renewables which wouldn’t be a problem if there were appropriate energy storage solutions. The biggest test in providing power on demand is storage. Even if homes, businesses, or states install wind energy systems or solar panels, storing the generated energy is still an unsolved issue.
Opponents of renewable energy highlight the reliability factor on solar and wind to augment support for coal, gas, and nuclear plants, which provide baseload power. This argument is used by lobbyists to drive out investment into renewables, thus becoming a barrier to widespread adoption of wind and solar energy.
Location challenges
Renewable energy plants have grids that require a large area of land. It can be unappealing to customers to switch to renewable energy sources as it is conditional depending on the size of the land. Not all states and regions are apt to build solar panels or have wind turbines as they are dependent on the geographical location. For example, building solar panels in California makes more sense than building them in New York as the former has an abundant supply of both sun and land.
Renewables operates on what is known as a decentralized model. In a decentralized power plant, small generating stations are spread across a larger area that works collectively to deliver power. In the case of coal, nuclear power, or natural gas, they are highly centralized and depend on fewer high output power plants.
Siting
Decentralized systems prove to be a problem for siting and transmission of energy created by solar or wind. Siting is needed to move blades or solar panels to large pieces of land. To do so requires to draw up contracts, negotiate, acquire permits, or build community relations; all of this can delay or kill a renewable project even before it begins.
Businesses can incur additional charges due to demand and delivery which seems like a significant challenge for them. Utility services apply these charges to recover costs of purchasing energy and maintaining power lines and energy lost in the transmission system. Moving power sources closer to your business will help you avoid such preventable expenses.
Transmission
The next challenge to overcome in renewables is the transmission of generated electricity. Transmission means the transfer of electricity from where it is generated to where it is consumed. Most transmitters that exist in this day and age are built for coal and other fossil fuels and not renewables. To make things easier for transmission of clean energy, there needs to be a significant infrastructure and technological development, which cost a lot of money.
Making the economics work with financing and siting can prove costly for developers and customers alike.
Policies and Regulations
Unfortunately, the fossil fuel industry is backed by multi-billionaires who wield a considerable amount of political influence. This severely affects the chances of expansion for the renewable industry. Industry experts estimate that the USA spends upwards of $60 billion on subsidies for fossil fuels every year. The taxpayers have helped fund the industry’s research and development, drilling, mining, and generation of electricity. Renewables like wind and solar enjoy much lesser subsidies and political backing. The fossil fuel industry has used its enormous power to spread misinformation about climate change.
To increase public interest and investment in renewables, there need to be clear and concise legal procedures and regulatory policies. Having proper regulations in place creates a stable environment for investment and overcome hurdles and can anticipate the revenue streams. Large-scale renewable energy projects require a large amount of capital which is hindered by the failure of proper policies that fail to attract private players.
Frequently Asked Questions
What is a major challenge with using more renewable energy?
Renewable energy is competing with fossil fuels and nuclear technology. Other major challenges include underdeveloped infrastructure and lack of economies of scale.
What are the benefits of using renewable energy?
Some benefits of using renewable energy are lower energy costs, reduction of emissions, massive positive impact on environment, and marketing opportunities for businesses.
Is renewable energy cheaper than fossil fuels?
Fossil fuels are subsidized which makes it cheaper at the beginning. However, renewables get cheaper to maintain over the years hence making it cheaper than fossil fuels.
What is the cheapest source of renewable energy?
Solar PV and on site wind are the cheapest sources of renewable energy sources.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "What is a major challenge with using more renewable energy?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Renewable energy is competing with fossil fuels and nuclear technology. Other major challenges include underdeveloped infrastructure and lack of economies of scale."
}
},{
"@type": "Question",
"name": "What are the benefits of using renewable energy?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Some benefits of using renewable energy are lower energy costs, reduction of emissions, massive positive impact on environment, and marketing opportunities for businesses."
}
},{
"@type": "Question",
"name": "Is renewable energy cheaper than fossil fuels?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Fossil fuels are subsidized which makes it cheaper at the beginning. However, renewables get cheaper to maintain over the years hence making it cheaper than fossil fuels."
}
}]
}
Read More